首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Faster growing and more virulent strains of methicillin resistant Staphylococcus aureus (MRSA) are increasingly displacing highly resistant MRSA. Elevated fitness in these MRSA is often accompanied by decreased and heterogeneous levels of methicillin resistance; however, the mechanisms for this phenomenon are not yet fully understood. Whole genome sequencing was used to investigate the genetic basis of this apparent correlation, in an isogenic MRSA strain pair that differed in methicillin resistance levels and fitness, with respect to growth rate. Sequencing revealed only one single nucleotide polymorphism (SNP) in the diadenylate cyclase gene dacA in the faster growing but less resistant strain. Diadenylate cyclases were recently discovered to synthesize the new second messenger cyclic diadenosine monophosphate (c-di-AMP). Introduction of this mutation into the highly resistant but slower growing strain reduced resistance and increased its growth rate, suggesting a direct connection between the dacA mutation and the phenotypic differences of these strains. Quantification of cellular c-di-AMP revealed that the dacA mutation decreased c-di-AMP levels resulting in reduced autolysis, increased salt tolerance and a reduction in the basal expression of the cell wall stress stimulon. These results indicate that c-di-AMP affects cell envelope-related signalling in S. aureus. The influence of c-di-AMP on growth rate and methicillin resistance in MRSA indicate that altering c-di-AMP levels could be a mechanism by which MRSA strains can increase their fitness levels by reducing their methicillin resistance levels.  相似文献   

2.
Pseudomonas aeruginosa and Staphylococcus aureus are commonly associated with hospital-acquired infections and are known to form biofilms. Ciprofloxacin (CIP), which is normally used to treat these infections, is seldom effective in killing cells in a biofilm. This is mostly due to slow or weak penetration of CIP to the core of biofilms. The problem is accentuated by the release of CIP below MIC (minimal inhibitory concentration) levels following a rapid (burst) release. The aim of this study was to develop a drug carrier that would keep CIP above MIC levels for an extended period. Ciprofloxacin was suspended into poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO), and electrospun into nanofibers (CIP-F). All of the CIP was released from the nanofibers within 2 h, which is typical of a burst release. However, 99% of P. aeruginosa PA01 cells and 91% of S. aureus Xen 30 cells (a methicillin-resistant strain) in biofilms were killed when exposed to CIP-F. CIP levels remained above MIC for 5 days, as shown by growth inhibition of the cells in vitro. The nanofibers were smooth in texture with no bead formation, as revealed by scanning electron and atomic force microscopy. A single vibration peak at 1632 cm-1, recorded with Fourier transform infrared spectroscopy, indicated that CIP remained in crystal form when incorporated into PDLLA: PEO. No abnormalities in the histology of MCF-12A breast epithelial cells were observed when exposed to CIP-F. This is the first report of the inhibition of biofilm formation by CIP released from PDLLA: PEO nanofibers.  相似文献   

3.
Community acquired methicillin resistant Staphylococcus aureus (CA-MRSA), and the USA300 strain of CA-MRSA in particular, are known for their rapid community transmission, and propensity to cause aggressive skin and soft tissue infections. To assess factors that contribute to these hallmark traits of CA-MRSA, we evaluated how growth of USA300 and production of secreted virulence factors was influenced on exposure to physiologic levels of unsaturated free fatty acids that would be encountered on the skin or anterior nares, which represent the first sites of contact with healthy human hosts. There was a sharp threshold between sub-inhibitory and inhibitory concentrations, such that 100 µM sapienic acid (C16∶1) and linoleic acid (C18∶1) were sufficient to prevent growth after 24 h incubation, while 25 µM allowed unrestricted growth, and 50 µM caused an approximate 10–12 h lag, followed by unimpeded exponential growth. Conversely, saturated palmitic or stearic acids did not affect growth at 100 µM. Although growth was not affected by 25 µM sapienic or linoleic acid, these and other unsaturated C16 and C18 fatty acids, but not their saturated counterparts, promoted robust production of secreted proteases comprising the Staphylococcal proteolytic cascade. This trait was also manifested to varying degrees in other CA-MRSA, and in genetically diverse methicillin susceptible S. aureus strains. Therefore, induction of the Staphylococcal proteolytic cascade by unsaturated fatty acids is another feature that should now be evaluated as a potential contributing factor in the aggressive nature of skin and soft tissue infections caused by USA300, and as a general virulence mechanism of S. aureus.  相似文献   

4.
Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.  相似文献   

5.
S. aureus is a significant human pathogen and has previously been shown to form cell wall deficient forms or L-forms in vitro and in vivo during infection. Despite many previous studies on S. aureus L-forms, the mechanisms of L-form formation in this organism remain unknown. Here we established the L-form model in S. aureus and constructed a transposon mutant library to identify genes involved in L-form formation. Screening of the library for mutants defective in L-form formation identified glpF involved in glycerol uptake being important for L-form formation in S. aureus. Consistent with this observation, glpF was found to be highly expressed in L-form S. aureus but hardly expressed in normal walled form. In addition, glpF mutant was found to be defective in antibiotic persistence. The defect in L-form formation and antibiotic persistence of the glpF mutant could be complemented by the wild type glpF gene. These findings provide new insight into the mechanisms of L-form formation and persistence in S. aureus and may have implications for development of new drugs targeting persisters for improved treatment.  相似文献   

6.
Polysaccharide intercellular adhesin (PIA), also known as poly-N-acetyl-β-(1–6)-glucosamine (PIA/PNAG) is an important component of Staphylococcus aureus biofilms and also contributes to resistance to phagocytosis. The proteins IcaA, IcaD, IcaB, and IcaC are encoded within the intercellular adhesin (ica) operon and synthesize PIA/PNAG. We discovered a mechanism of phase variation in PIA/PNAG expression that appears to involve slipped-strand mispairing. The process is reversible and RecA-independent, and involves the expansion and contraction of a simple tetranucleotide tandem repeat within icaC. Inactivation of IcaC results in a PIA/PNAG-negative phenotype. A PIA/PNAG-hyperproducing strain gained a fitness advantage in vitro following the icaC mutation and loss of PIA/PNAG production. The mutation was also detected in two clinical isolates, suggesting that under certain conditions, loss of PIA/PNAG production may be advantageous during infection. There was also a survival advantage for an icaC-negative strain harboring intact icaADB genes relative to an isogenic icaADBC deletion mutant. Together, these results suggest that inactivation of icaC is a mode of phase variation for PIA/PNAG expression, that high-level production of PIA/PNAG carries a fitness cost, and that icaADB may contribute to bacterial fitness, by an unknown mechanism, in the absence of an intact icaC gene and PIA/PNAG production.  相似文献   

7.
8.
This study investigated the potential antibacterial activity of three series of compounds synthesized from 12 linear and branched polyamines with 2–8 amino groups, which were substituted to produce the corresponding guanides, biguanides, or phenylguanides, against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Antibacterial activity was measured for each compound by determining the minimum inhibitory concentration against the bacteria, and the toxicity towards mammalian cells was determined. The most effective compound, THAM trisphenylguanide, was studied in time-to-kill and cytoplasmic leakage assays against methicillin-resistant Staphylococcus aureus (MRSA, USA300) in comparison to chlorhexidine. Preliminary toxicity and MRSA challenge studies in mice were also conducted on this compound. THAM trisphenylguanide showed significant antibacterial activity (MIC ∼1 mg/L) and selectivity against MRSA relative to all the other bacteria examined. In time-to-kill assays it showed increased antimicrobial activity against MRSA versus chlorhexidine. It induced leakage of cytoplasmic content at concentrations that did not reduce cell viability, suggesting the mechanism of action may involve membrane disruption. Using an intraperitoneal mouse model of invasive MRSA disease, THAM trisphenylguanide reduced bacterial burden locally and in deeper tissues. This study has identified a novel guanide compound with selective microbicidal activity against Staphylococcus aureus, including a methicillin-resistant (MRSA) strain.  相似文献   

9.
Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence.  相似文献   

10.
Staphylococcus aureus is a dangerous human pathogen. A number of the proteins secreted by this bacterium are implicated in its virulence, but many of the components of its secretome are poorly characterized. Strains of S. aureus can produce up to six homologous extracellular serine proteases grouped in a single spl operon. Although the SplA, SplB, and SplC proteases have been thoroughly characterized, the properties of the other three enzymes have not yet been investigated. Here, we describe the biochemical and structural characteristics of the SplD protease. The active enzyme was produced in an Escherichia coli recombinant system and purified to homogeneity. P1 substrate specificity was determined using a combinatorial library of synthetic peptide substrates showing exclusive preference for threonine, serine, leucine, isoleucine, alanine, and valine. To further determine the specificity of SplD, we used high-throughput synthetic peptide and cell surface protein display methods. The results not only confirmed SplD preference for a P1 residue, but also provided insight into the specificity of individual primed- and non-primed substrate-binding subsites. The analyses revealed a surprisingly narrow specificity of the protease, which recognized five consecutive residues (P4-P3-P2-P1-P1’) with a consensus motif of R-(Y/W)-(P/L)-(T/L/I/V)↓S. To understand the molecular basis of the strict substrate specificity, we crystallized the enzyme in two different conditions, and refined the structures at resolutions of 1.56 Å and 2.1 Å. Molecular modeling and mutagenesis studies allowed us to define a consensus model of substrate binding, and illustrated the molecular mechanism of protease specificity.  相似文献   

11.
12.
The Staphylococcus aureus HrtAB system is a hemin-regulated ABC transporter composed of an ATPase (HrtA) and a permease (HrtB) that protect S. aureus against hemin toxicity. S. aureus strains lacking hrtA exhibit liver-specific hyper-virulence and upon hemin exposure over-express and secrete immunomodulatory factors that interfere with neutrophil recruitment to the site of infection. It has been proposed that heme accumulation in strains lacking hrtAB is the signal which triggers S. aureus to elaborate this anti-neutrophil response. However, we report here that S. aureus strains expressing catalytically inactive HrtA do not elaborate the same secreted protein profile. This result indicates that the physical absence of HrtA is responsible for the increased expression of immunomodulatory factors, whereas deficiencies in the ATPase activity of HrtA do not contribute to this process. Furthermore, HrtB expression in strains lacking hrtA decreases membrane integrity consistent with dysregulated permease function. Based on these findings, we propose a model whereby hemin-mediated over-expression of HrtB in the absence of HrtA damages the staphylococcal membrane through pore formation. In turn, S. aureus senses this membrane damage, triggering the increased expression of immunomodulatory factors. In support of this model, wildtype S. aureus treated with anti-staphylococcal channel-forming peptides produce a secreted protein profile that mimics the effect of treating ΔhrtA with hemin. These results suggest that S. aureus senses membrane damage and elaborates a gene expression program that protects the organism from the innate immune response of the host.  相似文献   

13.
"超级细菌"耐甲氧西林金黄色葡萄球菌(methicillin resistant Staphylococcus aureus,MRSA)是诱发连续腹膜透析患者腹膜炎的常见细菌,且治疗困难。目前缺少MRSA腹膜炎动物模型。腹腔注射2×109~2×1010CFU/m L 7组不同浓度的MRSA感染小鼠,观察小鼠死亡时间,测定肝脏与脾脏细菌定植量,进行肝、脾病理分析,确定适宜的建模浓度。研究发现,小鼠感染细菌浓度最小致死剂量为每只2×109CFU,最适建模浓度为每只1.4×109CFU。结果表明建立了耐甲氧西林金黄色葡萄球菌小鼠腹膜炎模型,为MRSA致腹膜炎的致病机制研究、疫苗的研制提供实验基础。  相似文献   

14.
15.
The red flour beetle Tribolium castaneum is a common insect pest and has been established as a model beetle to study insect development and immunity. This study demonstrates that defensin 1 from T. castaneum displays in vitro and in vivo antimicrobial activity against drug resistant Staphylococcus aureus strains. The minimum inhibitory concentration (MIC) of defensin 1 against 11 reference and clinical staphylococcal isolates was between 16–64 μg/ml. The putative mode of action of the defensin peptide is disruption of the bacterial cell membrane. The antibacterial activity of defensin 1 was attenuated by salt concentrations of 1.56 mM and 25 mM for NaCl and CaCl2 respectively. Treatment of defensin 1 with the reducing agent dithiothreitol (DTT) at concentrations 1.56 to 3.13 mM abolished the antimicrobial activity of the peptide. In the presence of subinhibitory concentrations of antibiotics that also target the bacterial cell envelope such as telavancin and daptomycin, the MIC of the peptide was as low as 1 μg/ml. Moreover, when tested against an S. aureus strain that was defective in D-alanylation of the cell wall, the MIC of the peptide was 0.5 μg/ml. Defensin 1 exhibited no toxicity against human erythrocytes even at 400 μg/ml. The in vivo activity of the peptide was validated in a Caenorhabditis elegans-MRSA liquid infection assay. These results suggest that defensin 1 behaves similarly to other cationic AMPs in its mode of action against S. aureus and that the activity of the peptide can be enhanced in combination with other antibiotics with similar modes of action or with compounds that have the ability to decrease D-alanylation of the bacterial cell wall.  相似文献   

16.
Methicillin-resistant Staphylococcus aureus (MRSA), particularly the USA300 strain, is a highly virulent pathogen responsible for an increasing number of skin and soft tissue infections globally. Furthermore, MRSA-induced soft tissue infections can rapidly progress into life-threatening conditions, such as sepsis and necrotizing fasciitis. The importance of neutrophils in these devastating soft tissue infections remains ambiguous, partly because of our incomplete understanding of their behaviour. Spinning disk confocal microscopy was used to visualize the behaviour of GR1-labelled neutrophils in subcutaneous tissue in response to GFP-expressing MRSA attached to a foreign particle (agarose bead). We observed significant directional neutrophil recruitment towards the S. aureus agarose bead but not a control agarose bead. A significant increase in neutrophil crawling within the capillaries surrounding the infectious nidus was noted, with impaired capillary perfusion in these vessels and increased parenchymal cell death. No neutrophils were able to emigrate from capillaries. The crawling within these capillaries was mediated by the β2 and α4 integrins and blocking these integrins 2 hours post infection eliminated neutrophil crawling, improved capillary perfusion, reduced cell death and reduced lesion size. Blocking prior to infection increased pathology. Neutrophil crawling within capillaries during MRSA soft tissue infections, while potentially contributing to walling off or preventing early dissemination of the pathogen, resulted in impaired perfusion and increased tissue injury with time.  相似文献   

17.
The Gcn5-related N-acetyltransferases (GNATs) are ubiquitously expressed in nature and perform a diverse range of cellular functions through the acetylation of small molecules and protein substrates. Using activated acetyl coenzyme A as a common acetyl donor, GNATs catalyse the transfer of an acetyl group to acceptor molecules including aminoglycoside antibiotics, glucosamine-6-phosphate, histones, serotonin and spermidine. There is often only very limited sequence conservation between members of the GNAT superfamily, in part, reflecting their capacity to bind a diverse array of substrates. In contrast, the secondary and tertiary structures are highly conserved, but then at the quaternary level there is further diversity, with GNATs shown to exist in monomeric, dimeric, or tetrameric states. Here we describe the X-ray crystallographic structure of a GNAT enzyme from Staphyloccocus aureus with only low sequence identity to previously solved GNAT proteins. It contains many of the classical GNAT motifs, but lacks other hallmarks of the GNAT fold including the classic β-bulge splayed at the β-sheet interface. The protein is likely to be a dimer in solution based on analysis of the asymmetric unit within the crystal structure, homology with related GNAT family members, and size exclusion chromatography. The study provides the first high resolution structure of this enzyme, providing a strong platform for substrate and cofactor modelling, and structural/functional comparisons within this diverse enzyme superfamily.  相似文献   

18.

Background

This study investigated the clinical characteristics of patients with septic arthritis caused by Staphylococcus aureus and tried to identify the risk factors for methicillin-resistant S. aureus (MRSA) arthritis.

Methods

Between January 2008 and December 2011, patients with septic arthritis caused by S. aureus were identified from the computerized databases of a regional hospital and a medical center in southern Taiwan. The medical records of these patients were retrospectively reviewed.

Results

A total of 93 patients with S. aureus arthritis were identified, and MRSA arthritis was found in 38 (40.9%) cases. The mean age of the patients was 58 years, and 86 (92.5%) episodes were classified as community-acquired infections. Diabetes mellitus (n = 41, 44.1%) was the most common underlying disease, followed by chronic kidney disease and liver cirrhosis. Patients with MRSA arthritis were more frequently elderly and found in the setting of healthcare-associated infection than patients with methicillin-susceptible S. aureus (MSSA) infections. No other significant differences in clinical manifestations and outcomes were noted between these two groups of patients. Overall, the in-hospital mortality rate was 5.4%, and diabetes mellitus was the only risk factor for mortality.

Conclusions

MRSA is emerging in the setting of community-acquired septic arthritis. MRSA septic arthritis is more likely to develop in the elderly and in healthcare-associated infections than MSSA septic arthritis.  相似文献   

19.
20.
Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号