首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By addressing several key features overlooked in previous studies, i.e. human disturbance, integration of ecosystem- and species-level conservation features, and principles of complementarity and representativeness, we present the first national-scale systematic conservation planning for China to determine the optimized spatial priorities for biodiversity conservation. We compiled a spatial database on the distributions of ecosystem- and species-level conservation features, and modeled a human disturbance index (HDI) by aggregating information using several socioeconomic proxies. We ran Marxan with two scenarios (HDI-ignored and HDI-considered) to investigate the effects of human disturbance, and explored the geographic patterns of the optimized spatial conservation priorities. Compared to when HDI was ignored, the HDI-considered scenario resulted in (1) a marked reduction (∼9%) in the total HDI score and a slight increase (∼7%) in the total area of the portfolio of priority units, (2) a significant increase (∼43%) in the total irreplaceable area and (3) more irreplaceable units being identified in almost all environmental zones and highly-disturbed provinces. Thus the inclusion of human disturbance is essential for cost-effective priority-setting. Attention should be targeted to the areas that are characterized as moderately-disturbed, <2,000 m in altitude, and/or intermediately- to extremely-rugged in terrain to identify potentially important regions for implementing cost-effective conservation. We delineated 23 primary large-scale priority areas that are significant for conserving China''s biodiversity, but those isolated priority units in disturbed regions are in more urgent need of conservation actions so as to prevent immediate and severe biodiversity loss. This study presents a spatially optimized national-scale portfolio of conservation priorities – effectively representing the overall biodiversity of China while minimizing conflicts with economic development. Our results offer critical insights for current conservation and strategic land-use planning in China. The approach is transferable and easy to implement by end-users, and applicable for national- and local-scale systematic conservation prioritization practices.  相似文献   

2.
Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (>25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two‐thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid‐1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritization to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritization can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritizing management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale.  相似文献   

3.
Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US$14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US$5 per hectare per year in carbon revenue and prevent the release of 1-2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments.  相似文献   

4.
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.  相似文献   

5.
Conserving biodiversity in managed landscapes requires the definition of spatial conservation priorities. The systematic conservation planning tools which are used to define these conservation priorities, assess the vulnerability of different locations by combining two different elements: some measurement of the biological assets in question, and some measurement of the key processes which threaten these biological assets. For instance, in cumulative impact mapping, maps of individual human activities that impact ecosystems (hereafter referred to as ‘stressor’ for individual maps and ‘cumulative stressor’ for combined maps) are overlaid with maps of ecosystem vulnerability, in order to estimate the overall ecological impact of human activities on natural ecosystems. These tools are appealing because they are easy to use and inform regional land planning. However, given that once these spatial conservation priorities are defined they potentially have far-reaching consequences, there is a need to test their robustness and reliability. Here we propose to investigate how the uncertainties related to the estimation of a cumulative stressor layer affect the definition of spatial conservation priorities. We conduct a sensitivity analysis of the different ways of estimating major stressors related to human activities (transport, urbanization and population) with a specific focus on agriculture. We show that spatial conservation priorities are little sensitive to most of the parameters and input data used to estimate the cumulative stressor map. In particular, they are not very sensitive to changes in spatially overlapping stressors, i.e. those which overlap spatially with other stressors. However, our analyses also reveal that spatial conservation priorities are highly sensitive to how the agriculture stressor is defined. These results highlight the importance of better understanding how agricultural activities impact biodiversity and establishing how more accurate information on agricultural practices can be used to define spatial conservation priorities.  相似文献   

6.
BackgroundThe world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas) as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics) use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities’ economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities.Conclusion/SignificanceGueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania’s mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity. Given their disproportional importance in relation to their size, they are local hotspots of biodiversity deserving global attention.  相似文献   

7.
Spatial priorities for the conservation of three key Mediterranean habitats, i.e. seagrass Posidonia oceanica meadows, coralligenous formations, and marine caves, were determined through a systematic planning approach. Available information on the distribution of these habitats across the entire Mediterranean Sea was compiled to produce basin-scale distribution maps. Conservation targets for each habitat type were set according to European Union guidelines. Surrogates were used to estimate the spatial variation of opportunity cost for commercial, non-commercial fishing, and aquaculture. Marxan conservation planning software was used to evaluate the comparative utility of two planning scenarios: (a) a whole-basin scenario, referring to selection of priority areas across the whole Mediterranean Sea, and (b) an ecoregional scenario, in which priority areas were selected within eight predefined ecoregions. Although both scenarios required approximately the same total area to be protected in order to achieve conservation targets, the opportunity cost differed between them. The whole-basin scenario yielded a lower opportunity cost, but the Alboran Sea ecoregion was not represented and priority areas were predominantly located in the Ionian, Aegean, and Adriatic Seas. In comparison, the ecoregional scenario resulted in a higher representation of ecoregions and a more even distribution of priority areas, albeit with a higher opportunity cost. We suggest that planning at the ecoregional level ensures better representativeness of the selected conservation features and adequate protection of species, functional, and genetic diversity across the basin. While there are several initiatives that identify priority areas in the Mediterranean Sea, our approach is novel as it combines three issues: (a) it is based on the distribution of habitats and not species, which was rarely the case in previous efforts, (b) it considers spatial variability of cost throughout this socioeconomically heterogeneous basin, and (c) it adopts ecoregions as the most appropriate level for large-scale planning.  相似文献   

8.
Limited budgets and budget cuts hamper the development of effective biodiversity conservation networks. Optimizing the spatial configuration of conservation networks given such budget constraints remains challenging. Systematic conservation planning addresses this challenge. Systematic conservation planning can integrate both biodiversity and ecosystem services as conservation targets, and hence address the challenge to operationalize ecosystem services as an anthropocentric argument for conservation. We create two conservation scenarios to expand the current conservation network in the Dutch province of Limburg. One scenario focuses on biodiversity only and the other integrates biodiversity and ecosystem services. We varied conservation budgets in these scenarios and used the software Marxan to assess differences in the resulting network configurations. In addition, we tested the network’s cost-effectiveness by allocating a conservation budget either in one or in multiple steps. We included twenty-nine biodiversity surrogates and five ecosystem services. The inclusion of ecosystem services to expand Limburg’s conservation network only moderately changed prioritized areas, compared to only conserving biodiversity. Network expansion in a single time-step is more efficient in terms of compactness and cost-effectiveness than implementing it in multiple time-steps. Therefore, to cost-effectively plan conservation networks, the full budget should ideally be available before the plans are implemented. We show that including ecosystem services to cost-effectively expand conservation networks can simultaneously encourage biodiversity conservation and stimulate the protection of conservation-compatible ecosystem services.  相似文献   

9.
Summary   Conservation planning aims to ensure the protection and continuation of biodiversity. In rural landscapes in Victoria, this will require the restoration of habitat and biophysical processes to levels that can sustain the majority of species. Planning is required at scales large enough to have ecological relevance. In this study, a land-use change scenario that plans for the conservation of native biodiversity within the Goulburn Broken Catchment was developed using simple ecological principles. A set of indicative rules for restoring remnant native vegetation was modelled within a geographical information system. The modelling of the rules resulted in a change in rural landscapes from highly fragmented (with few large remnants) to highly connected. Future applications of this approach include incorporating the biodiversity rules into a biophysical model to assess the effect of planning landscapes for the conservation of biodiversity on hydrological and economic outcomes for the region. In addition, the rules are to be refined so that the priority landscapes for biodiversity planning can be identified.  相似文献   

10.
鲨鱼在气候变化和人类活动等因素的影响下面临着种群衰退的风险,开展鲨鱼保护优先区研究是鲨鱼保护行动的重要工作.将气候速度引入鲨鱼保护优先区的识别过程,旨在阐明中国周边海域鲨鱼现状保护成效和保护空缺,并预测气候速度影响下的鲨鱼保护优先区空间格局及其变化趋势.以集成物种分布模型模拟的146种鲨鱼栖息地作为保护对象,以2015年至2100年两种气候变化情景下的气候速度作为保护的机会成本,基于系统保护规划理论模拟现状和未来情景下的鲨鱼保护优先区选址方案.研究结果表明:(1)长江口以南至台湾海峡和北部湾近岸海域为鲨鱼多样性分布的主要区域,台湾海峡区域亦为珍稀濒危物种的重要分布区;(2)在两种气候情景下,南海中南部将面临较高的气候变化风险,而长江口以南至珠江口的近岸海域气候速度均相对较低,提示了这些区域或能成为气候变化影响下的生物避难所;(3)现有保护区仅保护了1.33%的海域和不到4%的鲨鱼物种,尚存在较大的保护空缺.当保护海域比例提升至10%时,可覆盖绝大多数鲨鱼物种.而当比例提升至30%时,珍稀濒危物种的栖息地将得到有效保护;(4)气候变化影响下保护优先区选址将发生不同程度的变化,尤其是在中国南海区域,如在保护规划时兼顾气候速度,可在满足相似保护目标的前提下减少保护优先区内25%以上的气候压力,以使其具有较强的应对气候变化潜力。  相似文献   

11.
Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems.  相似文献   

12.
Climate change may shrink and/or shift plant species ranges thereby increasing their vulnerability and requiring targeted conservation to facilitate adaptation. We quantified the vulnerability to climate change of plant species based on exposure, sensitivity and adaptive capacity and assessed the effects of including these components in complementarity‐based spatial conservation prioritisation. We modelled the vulnerability of 584 native plant species under three climate change scenarios in an 11.9 million hectare fragmented agricultural region in southern Australia. We represented exposure as species' geographical range under each climate change scenario as quantified using species distribution models. We calculated sensitivity as a function of the impact of climate change on species' geographical ranges. Using a dispersal kernel, we quantified adaptive capacity as species' ability to migrate to new geographical ranges under each climate change scenario. Using Zonation, we assessed the impact of individual components of vulnerability (exposure, sensitivity and adaptive capacity) on spatial conservation priorities and levels of species representation in priority areas under each climate change scenario. The full vulnerability framework proved an effective basis for identifying spatial conservation priorities under climate change. Including different dimensions of vulnerability had significant implications for spatial conservation priorities. Incorporating adaptive capacity increased the level of representation of most species. However, prioritising sensitive species reduced the representation of other species. We conclude that whilst taking an integrated approach to mitigating species vulnerability to climate change can ensure sensitive species are well‐represented in a conservation network, this can come at the cost of reduced representation of other species. Conservation planning decisions aimed at reducing species vulnerability to climate change need to be made in full cognisance of the sensitivity of spatial conservation priorities to individual components of vulnerability, and the trade‐offs associated with focussing on sensitive species.  相似文献   

13.
Conservation policies and environmental impact assessments commonly target threatened species and habitats. Nevertheless, macroecological research provides reasons why also common species should be considered. We investigate the consequences of focussing solely on legally protected species and habitats in a spatial conservation planning context using a comprehensive, benthic marine data set from the northern Baltic Sea. Using spatial prioritization and surrogacy analysis, we show that the common approach in conservation planning, where legally listed threatened species and habitats are the focus of conservation efforts, could lead to poor outcomes for common species (and therefore biodiversity as a whole), allowing them to decline in the future. If conservation efforts were aimed solely at threatened species, common species would experience a loss of 62% coverage. In contrast, if conservation plans were based only on common species, threatened species would suffer a loss of 1%. Threatened species are rare and their ecological niches distinct, making them poor surrogates for biodiversity. The best results are achieved by unified planning for all species and habitats. The minimal step towards acknowledging common species in conservation planning would be the inclusion of the richness of common species, complemented by information on indicator species or species of high importance for ecosystem functioning. The trade-off between planning for rare and common species should be evaluated, to minimize losses to biodiversity.  相似文献   

14.
Establishing different types of conservation zones is becoming commonplace. However, spatial prioritization methods that can accommodate multiple zones are poorly understood in theory and application. It is typically assumed that management regulations across zones have differential levels of effectiveness (“zone effectiveness”) for biodiversity protection, but the influence of zone effectiveness on achieving conservation targets has not yet been explored. Here, we consider the zone effectiveness of three zones: permanent closure, partial protection, and open, for planning for the protection of five different marine habitats in the Vatu-i-Ra Seascape, Fiji. We explore the impact of differential zone effectiveness on the location and costs of conservation priorities. We assume that permanent closure zones are fully effective at protecting all habitats, open zones do not contribute towards the conservation targets and partial protection zones lie between these two extremes. We use four different estimates for zone effectiveness and three different estimates for zone cost of the partial protection zone. To enhance the practical utility of the approach, we also explore how much of each traditional fishing ground can remain open for fishing while still achieving conservation targets. Our results show that all of the high priority areas for permanent closure zones would not be a high priority when the zone effectiveness of the partial protection zone is equal to that of permanent closure zones. When differential zone effectiveness and costs are considered, the resulting marine protected area network consequently increases in size, with more area allocated to permanent closure zones to meet conservation targets. By distributing the loss of fishing opportunity equitably among local communities, we find that 84–88% of each traditional fishing ground can be left open while still meeting conservation targets. Finally, we summarize the steps for developing marine zoning that accounts for zone effectiveness.  相似文献   

15.

Background

The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities.

Methodology/Principal Findings

We investigate the importance of formulating conservation planning problems with objectives and cost data that relate to specific conservation actions. We identify priority areas in Australia for two alternative conservation actions: land acquisition and stewardship. Our analyses show that using the cost surrogate that most closely reflects the planned conservation action can cut the cost of achieving our biodiversity goals by half. We highlight spatial differences in relative priorities for land acquisition and stewardship in Australia, and provide a simple approach for determining which action should be undertaken where.

Conclusions/Significance

Our study shows that a poorly posed conservation problem that fails to pre-specify the planned conservation action and incorporate cost a priori can lead to expensive mistakes. We can be more efficient in achieving conservation goals by clearly specifying our conservation objective and parameterising the problem with economic data that reflects this objective.  相似文献   

16.
Pressure to conserve biodiversity with limited resources has led to increasing use of species distribution models (SDMs) for spatial conservation prioritization. Published spatial prioritization exercises often focus on well‐studied groups, with data compiled from on‐line databases of ad‐hoc collections. Conservation plans generally aim to protect all components of biodiversity, and it is implied that the species used in prioritization act as surrogates. Here, we assess the sensitivity of spatial priorities to model and surrogate choice using a case study from a fragmented agricultural area of south eastern Australia that is poorly represented in the national reserve system. We model the distributions of 30 species of bird, microbat and bee using two types of SDM; generalised linear models based on systematic surveys that yield presence and absence observations, and MaxEnt models based on biodiversity database records. Eight prioritization scenarios were tested using Zonation software, and were based on either the presence–background or presence–absence SDMs and combinations of surrogacy among the three taxa. We found low correlations between SDMs generated for the same species using different modelling frameworks (μ = 0.18, n = 26). Area under the receiver operating characteristic curve (AUC) estimates generated by MaxEnt were optimistic; on average 1.36 times higher than when tested against the systematic survey data. Conservation priorities were sensitive to the choice of surrogate and type of data used to fit SDMs, and though bats and birds formed moderately good surrogates for each other, there was less compelling evidence of surrogacy for bees. Because valid surrogacy is unlikely with most existing data sets, investment in high quality data for less‐surveyed groups prior to planning should still be a priority. If this is not possible, then it is advisable to analyse the sensitivity of conservation plans to the assumed surrogacy and quality of data available.  相似文献   

17.
The myriad challenges facing biodiversity under climate change are reflected in the challenges facing managers planning for these impacts. An ever-expanding number of recommendations and tools for climate change adaptation exist to aid managers in these efforts, yet navigating these various resources can lead to information overload and paralysis in decision-making. Here we provide a synthesis of the key considerations, approaches, and available tools for integrating climate change adaptation into management plans. We discuss principal elements in climate change adaptation—incorporating uncertainty through scenario planning and adaptive management—and review three leading frameworks for incorporating climate change adaptation into place-based biodiversity conservation planning. Finally, we identify the following key questions needed for long-term conservation planning and review the associated tools and techniques needed to address them: (1) How is the climate projected to change in my study area?; (2) How are non-climatic stressors projected to change?; (3) How vulnerable are species to climate change impacts?; (4) How are species ranges likely to respond?; and (5) How are management strategies expected to affect outcomes? In doing so, we aim to aid natural resource managers in navigating the burgeoning field of climate change adaptation planning and provide managers a roadmap for managing biodiversity under climate change.  相似文献   

18.
Protected areas (PAs) are recognized as the flagship tool to offset biodiversity loss on Earth. Spatial conservation planning seeks optimal designs of PAs that meet multiple targets such as biodiversity representation and population persistence. Since connectivity between PAs is a fundamental requirement for population persistence, several methods have been developed to include connectivity into PA design algorithms. Among these, the eigenvalue decomposition of the connectivity matrix allows for identifying clusters of strongly connected sites and selecting the sites contributing the most to population persistence. So far, this method was only suited to optimize an entire network of PAs without considering existing PAs in the new design. However, a more cost‐effective and realistic approach is to optimize the design of an extended network to improve its connectivity and thus population persistence. Here, we develop a flexible algorithm based on eigenvalue decomposition of connectivity matrices to extend existing networks of PAs while optimizing connectivity and population growth rate. We also include a splitting algorithm to improve cluster identification. The new algorithm accounts for the change in connectivity due to the increased biological productivity often observed in existing PAs. We illustrate the potential of our algorithm by proposing an extension of the network of ~100 Mediterranean marine PAs to reach the targeted 10% surface area protection from the current 1.8%. We identify differences between the clean slate scenario, where all sites are available for protection, irrespective of their current protection status, and the scenario where existing PAs are forced to be included into the optimized solution. By integrating this algorithm to existing multi‐objective and multi‐specific algorithms of PA selection, the demographic effects of connectivity can be explicitly included into conservation planning.  相似文献   

19.
The establishment of marine protected areas (MPAs) for cetaceans is an important strategy to mitigate human disturbance and protect biodiversity. Despite abundant cetacean species, there are only a few MPAs dedicated to cetacean conservation in China, all of which are for inshore dolphins. Bryde's whales, the only nearshore baleen whale population in mainland China, are conflicting with intensive human activities, yet an effective conservation strategy is lacking. This study used species distribution models to analyze distribution patterns and suitable habitats of Bryde's whales in the Beibu Gulf and proposes the first baleen whale MPA in China. Our results showed Bryde's whales have a seasonal distribution pattern in the Beibu Gulf, and that the waters around Weizhou Island and the southeastern coast of Vietnam were their core habitats. The seasonal nighttime light data indicated a negative relationship between the number of ship lights and Bryde's whale sightings and suggest that Bryde's whales might be threatened by fisheries. We proposed an MPA based on the results, suggesting that the waters within 20 km around Weizhou Island should be declared a protected area. Furthermore, we recommend that anthropogenic activities in the waters around Weizhou Island are better managed to reduce negative impacts on marine life.  相似文献   

20.
Locally-established marine protected areas (MPAs) have been proven to achieve local-scale fisheries and conservation objectives. However, since many of these MPAs were not designed to form ecologically-connected networks, their contributions to broader-scale goals such as complementarity and connectivity can be limited. In contrast, integrated networks of MPAs designed with systematic conservation planning are assumed to be more effective—ecologically, socially, and economically—than collections of locally-established MPAs. There is, however, little empirical evidence that clearly demonstrates the supposed advantages of systematic MPA networks. A key reason is the poor record of implementation of systematic plans attributable to lack of local buy-in. An intermediate scenario for the expansion of MPAs is scaling up of local decisions, whereby locally-driven MPA initiatives are coordinated through collaborative partnerships among local governments and their communities. Coordination has the potential to extend the benefits of individual MPAs and perhaps to approach the potential benefits offered by systematic MPA networks. We evaluated the benefits of scaling up local MPAs to form networks by simulating seven expansion scenarios for MPAs in the Verde Island Passage, central Philippines. The scenarios were: uncoordinated community-based establishment of MPAs; two scenarios reflecting different levels of coordinated MPA expansion through collaborative partnerships; and four scenarios guided by systematic conservation planning with different contexts for governance. For each scenario, we measured benefits through time in terms of achievement of objectives for representation of marine habitats. We found that: in any governance context, systematic networks were more efficient than non-systematic ones; systematic networks were more efficient in broader governance contexts; and, contrary to expectations but with caveats, the uncoordinated scenario was slightly more efficient than the coordinated scenarios. Overall, however, coordinated MPA networks have the potential to be more efficient than the uncoordinated ones, especially when coordinated planning uses systematic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号