首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain B31T is a Gram-staining-negative, motile, and extremely halophilic archaeon that was isolated from salt-fermented seafood. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were determined. Phylogenetic analysis of its 16S rRNA gene sequence and composition of its major polar lipids placed this archaeon in the genus Halorubrum of the family Halobacteriaceae. Strain B31T showed 97.3, 97.2, and 96.9 % 16S rRNA similarity to the type strains of Halorubrum alkaliphilum, Hrr. tibetense, and Hrr. vacuolatum, respectively. Its major polar lipids were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulfated diglycosyl diether (S-DGD). Genomic DNA from strain B31T has a 61.7 mol% G+C content. Analysis of 16S rRNA gene sequences, as well as physiological and biochemical tests, identified genotypic and phenotypic differences between strain B31T and other Halorubrum species. The type strain of the novel species is B31T (=JCM 15757T =DSM 19504T).  相似文献   

2.

A total of 37 actinobacteria were isolated from eighteen lichen samples collected in Thailand. Based on the 16S rRNA gene sequences, they were identified into five genera including Actinoplanes (1 strain), Actinomadura (1 strain), Pseudosporangium (1 strain), Wangella (1 strain) and Streptomyces (33 strains). Among these isolates, strain Ptm05T, Ptm01 and Ptm12 showed low 16S rRNA gene similarity and was selected for the further taxonomic study using the polyphasic approach. These strains showed the highest 16S rRNA gene sequence similarity with Streptomyces sparsogenes ATCC 25498T (97.44–97.72%). Strain Ptm05T was selected for the type strain. The chemical cell composition of the strain was similar to the members of Streptomyces genus. LL-diaminopimelic acids were detected in the peptidoglycan. Menaquinones were MK-9(H8) and MK-9(H6). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified phospholipid, one unidentified glycolipid and one unidentified lipid were detected as the polar lipids. The predominant cellular fatty acids are anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C17:0 and C16:0. The dDNA-DNA hybridization values among strain Ptm05T and its closely related Streptomyces type strains were 17.2–18.0%. In addition, the ANIb and ANIm between strain Ptm05T and related Streptomyces type strains were ranged from 75.69 to 76.13% and 85.21 to 85.35%, respectively. Based on phenotypic and genomic evidence, strain Ptm05T (=?TBRC 14546T?=?NBRC 115203T) represents the novel species of the genus Streptomyces for which the name Streptomyces parmotrematis sp. nov. is proposed. This study showed that the lichens are the promising source of the novel actinobacterial taxa.

  相似文献   

3.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   

4.
Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed.  相似文献   

5.
Yoon  Jaewoo 《Annals of microbiology》2019,69(12):1301-1308
Purpose

A polyphasic analysis was performed on a novel bacterium, designated strain KMU-143T, which was isolated from seawater collected in the Republic of Korea.

Methods

A novel marine bacterium KMU-143T was analyzed and described using a polyphasic taxonomic method including 16S rRNA gene sequence analysis, DNA–DNA hybridization, and physiological, biochemical, and chemotaxonomic analyses.

Results

Strain KMU-143T was Gram-stain-negative, strictly aerobic, oval-shaped, non-motile, and chemoorganoheterotrophic. Phylogenetic analysis based on the 16S rRNA gene sequence demonstrated that the novel marine bacterium belongs to the family Rhodobacteraceae, of the class Alphaproteobacteria, and that it possessed the highest (97.1%) sequence similarity with Sulfitobacter pontiacus ChLG 10T and Sulfitobacter undariae W-BA2T. DNA–DNA relatedness values between strains KMU-143T, S. pontiacus JCM 21789T, and S. undariae KCTC 42200T were less than 70%. The major isoprenoid quinone of the novel isolate was ubiquinone-10 (Q-10) and the major (> 10%) cellular fatty acids were C16:0 and C18:1 ω7c. The genomic DNA G+C content of strain KMU-143T was 56.1 mol%. The polar lipid profile of the strain KMU-143T was found to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, and two unidentified lipids.

Conclusion

Based on the discriminative phylogenetic position and combination of genotypic and phenotypic properties, the strain is considered to represent a new species of the genus Sulfitobacter for which the name Sulfitobacter salinus sp. nov. is proposed. The type strain of S. salinus sp. nov. is KMU-143T (= KCCM 90322T = NBRC 113459T).

  相似文献   

6.
A Gram-staining positive, endospore-forming, motile and rod-shaped bacterial strain, BR-29T, was isolated from soil from west coast of the Korean peninsula, and its taxonomic position was investigated by a polyphasic study. Strain BR-29T grew optimally at around pH 7.5, at 30°C and in the presence of 0.5% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BR-29T fell into a clade comprising the type strains of Cohnella species, with which it exhibited 16S rRNA gene sequence similarity values of 92.8–96.4%. Strain BR-29T contained a cell wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The major fatty acids were anteiso-C15:0, C16:0 and iso-C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol and two unidentified phospholipids; a minor amount of phosphatidylglycerol was present. The DNA G+C content was 54.9 mol%. Strain BR-29T could be differentiated from phylogenetically related Cohnella species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BR-29T represents a novel species of the genus Cohnella, for which the name Cohnella boryungensis sp. nov., is proposed. The type strain is BR-29T (= KCTC 13735T = CCUG 59598T).  相似文献   

7.
Maeng  Soohyun  Kim  Myung Kyum  Chang  Yoonjee 《Antonie van Leeuwenhoek》2021,114(7):1025-1031

Two novel Gram-negative bacterial strains BT442T and BT584 were isolated from dry soil collected in mountains Busan and Guri, Korea during wintertime. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains BT442T and BT584 both belong to a distinct lineage within the genus Hymenobacter (family Hymenobacteraceae, order Cytophagales, class Cytophagia). Strain BT442T was closely related to Hymenobacter soli PB17T (98.0% 16S rRNA gene similarity) and Hymenobacter terrae POA9T (97.6%). No other recognized bacterial species showed more than 97% 16S rRNA gene sequence similarity to strains BT442T. The genome size of strain BT442T was 5,143,362 bp. Bacterial growth was observed at 10–30 °C (optimum 25 °C), pH 6.0–8.0 (optimum pH 6.0) in R2A agar and in the presence up to 1% NaCl. The major cellular fatty acids of strains BT442T and BT584 were iso-C15:0, anteiso-C15:0 and summed feature 3 (C16:1 ω6c / C16:1 ω7c). In addition, their predominant respiratory quinone was MK-7. The major polar lipids of strains BT442T and BT584 were identified to be phosphatidylethanolamine, aminophospholipid, and aminolipid. Based on the biochemical, chemotaxonomic, and phylogenetic analyses, strains BT442T and BT584 are novel bacterial species within the genus Hymenobacter, and the proposed name is Hymenobacter negativus. The strain type of Hymenobacter negativus is BT442T (=?KCTC 72902T?=?NBRC XXXXT).

  相似文献   

8.
Novel actinobacterial strains, PAGU 1247T, PAGU 1251 and PAGU 1252, were isolated from the skin of atopic dermatitis patients and were characterized using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that these isolates were located within the family Dermacoccaceae. The most closely related species of PAGU 1247T in phylogenetic terms was Branchiibius hedensis Mer 29717T, with 16S rRNA gene sequence similarity of 99.6%, although the DNA–DNA relatedness value was less than 43.9%. Some biochemical traits, such as lipase (C14) and α-galactosidase activity, could distinguish these isolates from B. hedensis. Strain PAGU 1247T contained iso-C16:0 and brC18:0 as the major fatty acids. The quinone system consisted of menaquinone MK-8(H6 and H4). The G + C content of the genomic DNA was 67.6 mol%. On the basis of its phenotypic properties and genetic distinctiveness, strains PAGU 1247T, PAGU 1251 and PAGU 1252 represents a novel species of the genus Branchiibius, for which the name Branchiibius cervicis sp. nov. is proposed. The type strain is PAGU 1247T (=NBRC 106593T = DSM 24166T).  相似文献   

9.
A short coccoid-rod-shaped, nonmotile actinobacteria strain MSL-11T was isolated from soil in Bigeum Island, Korea. A polyphasic study was undertaken to establish the taxonomic position of this strain. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain MSL-11T forms an evolutionary lineage within the radiation of the genus Nocardioides. The cell wall peptidoglycan of strain MSL-11T contained ll-diaminopimelic acid, indicating wall chemotype I. The predominant menaquinone was MK-8(H4). Strain MSL-11T had a cellular fatty acid profile containing straight-chain, branched, unsaturated, and 10-methyl fatty acids, with iso-C16:0 as a major fatty acid component detected. The DNA G + C content of the strain was 71.8 mol%. Comparative 16S rRNA gene sequencing revealed that the strains constituted a distinct subclade within the genus Nocardioides, displaying a 16S rRNA gene sequence similarity of about 95.68% with Nocardioides jensenii DSM 20641T. On the basis of both phenotypic and phylogenetic evidence, the strain is separated from previously described Nocardioides species and should be assigned to represent a novel species of the genus Nocardioides, for which the name Nocardioides dilutes sp. nov. is proposed. The type strain is strain MSL-11T (= KCTC 19288T = DSM 19318T).  相似文献   

10.
A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the ɛ-subclass of the Proteobacteria closely related to “Geospirillum arsenophilum” on the basis of physiological properties and 16S rRNA sequence comparison. The “Geospirillum” strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner. Received: 17 November 1998 / Accepted: 26 April 1999  相似文献   

11.
Li  Qin  Li  Yashi  Liu  Xiaomeng  Chen  Sanfeng 《Antonie van Leeuwenhoek》2022,115(1):7-18

Two strains HN-1T and 39 were isolated from rhizospheres of different plants grown in different regions of PR China. The two strains exhibited high nitrogenase activities and possessed almost identical 16S rRNA gene sequences. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the two strains were 99.9 and 99.8%, respectively, suggesting that they belong to one species. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strains HN-1T and 39 are the members of the genus Paenibacillus and both strains exhibited 99.5% similarity to Paenibacillus stellifer DSM 14472T and the both strains represented a separate lineage from all other Paenibacillus species. However, the ANI of type strain HN-1T with P. stellifer DSM 14472T was 90.69, which was below the recommended threshold value (<?95–96% ANI). The dDDH showed 42.1% relatedness between strain HN-1T and P. stellifer DSM 14472T, which was lower than the recommended threshold value (dDDH?<?70%). The strain HN-1T contain anteiso-C15:0 as major fatty acids and MK-7 as predominant isoprenoid quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four aminophospholipids and an unidentified glycolipid. Unlike the most closely related P. stellifer DSM 14472T, strain HN-1T or 39 was positive for catalase reaction. Distinct phenotypic and genomic characterisations from previously described taxa support the classification of strains HN-1T or 39 as representatives of a novel species of the genus Paenibacillus, for which the name Paenibacillus sinensis is proposed, with type strains HN-1T (=CGMCC 1.18902, JCM 34,620), and reference strain 39 (=CGMCC 1.18879, JCM 34,616), respectively.

  相似文献   

12.
Hu H  Lin HP  Xie Q  Li L  Xie XQ  Sun M  Hong K 《Antonie van Leeuwenhoek》2011,100(4):631-637
An actinomycete strain, which was designated 172115T, was isolated from mangrove soil in Shenzhen, China. Strain 172115T fell within the genus Streptomyces in the 16S rRNA gene tree and could be grouped into this genus based on its chemotaxonomic and morphological data. The strain shared the highest 16S rRNA gene sequence similarities with Streptomyces lanatus NBRC 12787T (AB184845) (98.29%) and Streptomyces lucensis NBRC 13056T (AB184280) (98.26%). The DNA–DNA hybridization values between strain 172115T and the two most closely related type strains were low enough to justify the assignment of the strain to a novel species. On the basis of these phenotypic, phylogenetic and chemotaxonomic characteristics, 172115T represents a novel species of the genus Streptomyces, for which, the name Streptomyces shenzhenensis sp. nov. is proposed for strain 172115T (=CCTCC AA 2011001T=DSM 42034T).  相似文献   

13.
Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T). Erika T. Quintana and Katarzyna Wierzbicka contributed equally to this work. The GenBank accession numbers for the 16S rRNA gene sequences of Streptomyces somaliensis DSM 40738T and Streptomyces sudanensis DSM 41607, DSM 41608, DSM 41609, SD 504T and SD 509 are EF540897, EF540898, EF540999, EF515876 and EF540900.  相似文献   

14.
Peng  Li-Yang  Yin  Rui  Gao  Shu-Kun  Jiang  Hui-Ning  Liu  Xiao-Xiao  Ma  Yu  Zhou  Yan-Xia 《Antonie van Leeuwenhoek》2022,115(1):33-40

A Gram-stain-negative, wheat, rod-shaped, non-motile, non-spore forming, and facultatively anaerobic bacterium strain, designated as PIT, was isolated from saline silt samples collected in saltern in Yantai, Shandong, China. Growth was observed within the ranges 4–45 °C (optimally at 33 °C), pH 6.0–9.0 (optimally at pH 7.0) and 1.0–11.0% NaCl (optimally at 3.0%, w/v). Strain PIT showed highest 16S rRNA gene sequence similarity to Kangiella sediminilitoris BB-Mw22T (98.3%) and Kangiella taiwanensis KT1T (98.3%). The major cellular fatty acids (>?10% of the total fatty acids) were iso-C15:0 (52.7%) and summed featured 9 (iso-C17:1ω9c/C16:0 10-methyl, 11.8%). The major polar lipids identified were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylglycerol. The major respiratory isoprenoid quinone was Q-8. The G?+?C content of the genomic DNA was 45.8%. Average Nucleotide Identity values between whole genome sequences of strain PIT and next related type strains supported the novel species status. Based on physiological, biochemical, chemotaxonomic characteristics and genomic analysis, strain PIT is considered to represent a novel species within the genus Kangiella, for which the name Kangiella shandongensis sp. nov. is proposed. The type strain is PIT (=?KCTC 82509 T?=?MCCC 1K04352T).

  相似文献   

15.
Yang  Shang  Liu  Guo-Hong  Tang  Rong  Han  Shuang  Xie  Cheng-Jie  Zhou  Shun-Gui 《Antonie van Leeuwenhoek》2022,115(3):435-444

Two strictly anaerobic nitrogen-fixing strains, designated RG17T and RG53T, were isolated from paddy soils in China. Strains RG17T and RG53T showed the highest 16S rRNA gene sequence similarities to the type strain Geomonas paludis (97.9–98.4%). Phylogenetic tree based on 16S rRNA gene sequences showed that two strains clustered with members of the genus Geomonas. Growth of strain RG17T was observed at 20–42 °C, pH 5.5–8.5 and 0–0.3% (w/v) NaCl while strain RG53T growth was observed at 20–42 °C, pH 5.5–9.5 and 0–0.7% (w/v) NaCl. Strains RG17T and RG53T contained MK-8 as main menaquinone and C15:1 ω6c, iso-C15:0, and Summed Feature 3 as the major fatty acids. The genomic DNA G?+?C content of strains RG17T and RG53T were 61.6 and 60.7%, respectively. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the isolated strains and the closely related Geomonas species were lower than the cut-off value (dDDH 70% and ANI 95–96%) for prokaryotic species delineation. Both strains possessed nif genes nifHDK and nitrogenase activities. Based on the above results, the two strains represent two novel species of the genus Geomonas, for which the names Geomonas fuzhouensis sp. nov. and Geomonas agri sp. nov., are proposed. The type strains are RG17T (=?GDMCC 1.2687T?=?KTCC 25332T) and RG53T (=?GDMCC 1.2630T?=?KCTC 25331T), respectively.

  相似文献   

16.
17.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

18.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

19.

Two bacterial strains, BT325T and BT690, were isolated from soil samples collected in Korea. Both strains were Gram stain-negative, short rod-shaped, and formed light-pink colored colonies. The 16S rRNA sequence similarity of strains BT325T and BT690 shared a sequence similarity of 99.7%. Both strains shared the highest 16S rRNA gene similarity of 98.6% with Microvirga arabica SV2184PT, followed by Microvirga ossetica V5/3 M T (98.5% and 98.2%, respectively), Microvirga soli R491T (98.3% and 98.2%, respectively), Microvirga aerilata (98.2% and 98.08%, respectively), Microvirga makkahensis (98.08% and 97.8%, respectively). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BT325T and BT690 were positioned in a distinct lineage within the family Methylobacteriaceae (order Rhizobiales, class Alphaproteobacteria). The genome size of strain BT325T was 5,200,315 bp and the genomic DNA G?+?C content was 64.3 mol%. The sole respiratory quinone of strain BT325T was Q-10 and the predominant cellular fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. Polyphasic taxonomic analysis of biochemical, chemotaxonomic, and phylogenetic analyses suggested that strains BT325T represents a novel bacterial species within the genus Microvirga, for which the name Microvirga splendida is proposed. The type strain of Microvirga splendida is BT325T (=?KCTC 72406 T?=?NBRC 114847 T).

  相似文献   

20.

A pink-coloured, salt- and alkali-tolerant planctomycetal strain (JC658T) with oval to pear-shaped, motile, aerobic, Gram-negative stained cells was isolated from a marine sponge, Pseudoceratina sp. Strain JC658T shares the highest 16S rRNA gene sequence identity with Maioricimonas rarisocia Mal4T (<?89.2%) in the family Planctomycetaceae. The genomic analysis of the new strain indicates its biotechnological potential for the production of various industrially important enzymes, notably sulfatases and carbohydrate-active enzymes (CAZymes), and also potential antimicrobial compounds. Several genes encoding restriction-modification (RM) and CRISPR-CAS systems are also present. NaCl is obligate for growth, of which strain JC658T can tolerate a concentration up to 6% (w/v). Optimum pH and temperature for growth are 8.0 (range 7.0–9.0) and 25 ºC (range 10–40 °C), respectively. The major respiratory quinone of strain JC658T is MK6. Major fatty acids are C16:1ω7c/C16:1ω6c, C18:0 and C16:0. Major polar lipids are phosphatidylcholine, phosphatidyl-dimethylethanolamine and phosphatidyl-monomethylethanolamine. The genomic size of strain JC658T is 7.36 Mb with a DNA G?+?C?content of 54.6 mol%. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that strain JC658T belongs to a novel genus and constitutes a novel species within the family Planctomycetaceae, for which we propose the name Thalassoroseus pseudoceratinae gen. nov., sp. nov. The novel species is represented by the type strain JC658T (=?KCTC 72881 T?=?NBRC 114371 T).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号