首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs) in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation) in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.  相似文献   

6.
The nuclear pore complex proteins SonA and SonB, the orthologs of mammalian RAE1 and NUP98, respectively, were identified in Aspergillus nidulans as cold-sensitive suppressors of a temperature-sensitive allele of the essential mitotic NIMA kinase (nimA1). Subsequent analyses found that sonB1 mutants exhibit temperature-dependent DNA damage sensitivity. To understand this pathway further, we performed a genetic screen to isolate additional conditional DNA damage-sensitive suppressors of nimA1. We identified two new alleles of SonA and four intragenic nimA mutations that suppress the temperature sensitivity of the nimA1 mutant. In addition, we identified SonC, a previously unstudied binuclear zinc cluster protein involved with NIMA and the DNA damage response. Like sonA and sonB, sonC is an essential gene. SonC localizes to nuclei and partially disperses during mitosis. When the nucleolar organizer region (NOR) undergoes mitotic condensation and removal from the nucleolus, nuclear SonC and histone H1 localize in a mutually exclusive manner with H1 being removed from the NOR region and SonC being absent from the end of the chromosome beyond the NOR. This region of chromatin is adjacent to a cluster of nuclear pore complexes to which NIMA localizes last during its progression around the nuclear envelope during initiation of mitosis. The results genetically extend the NIMA regulatory system to include a protein with selective large-scale chromatin location observed during mitosis. The data suggest a model in which NIMA and SonC, its new chromatin-associated suppressor, might help to orchestrate global chromatin states during mitosis and the DNA damage response.  相似文献   

7.
In S. cerevisiae, the lysine methyltransferase Set1 is a member of the multiprotein complex COMPASS. Set1 catalyzes mono-, di- and trimethylation of the fourth residue, lysine 4, of histone H3 using methyl groups from S-adenosylmethionine, and requires a subset of COMPASS proteins for this activity. The methylation activity of COMPASS regulates gene expression and chromosome segregation in vivo. To improve understanding of the catalytic mechanism of Set1, single amino acid substitutions were made within the SET domain. These Set1 mutants were evaluated in vivo by determining the levels of K4-methylated H3, assaying the strength of gene silencing at the rDNA and using a genetic assessment of kinetochore function as a proxy for defects in Dam1 methylation. The findings indicate that no single conserved active site base is required for H3K4 methylation by Set1. Instead, our data suggest that a number of aromatic residues in the SET domain contribute to the formation of an active site that facilitates substrate binding and dictates product specificity. Further, the results suggest that the attributes of Set1 required for trimethylation of histone H3 are those required for Pol II gene silencing at the rDNA and kinetochore function.  相似文献   

8.
CpG-binding protein (CXXC finger protein 1 (CFP1)) binds to DNA containing unmethylated CpG motifs and is required for mammalian embryogenesis, normal cytosine methylation, and cellular differentiation. Studies were performed to identify proteins that interact with CFP1 to gain insight into the molecular function of this protein. Immunoprecipitation and mass spectrometry reveal that human CFP1 associates with a approximately 450-kDa complex that contains the mammalian homologues of six of the seven components of the Set1/COMPASS complex, the sole histone H3-Lys4 methyltransferase in yeast. In vitro assays demonstrate that the human Set1/CFP1 complex is a histone methyltransferase that produces mono-, di-, and trimethylated histone H3 at Lys4. Confocal microscopy reveals that CFP1 and Set1 co-localize to nuclear speckles associated with euchromatin. A Set1 complex of reduced mass persists in murine embryonic stem cells lacking CFP1. These cells carry elevated levels of methylated histone H3-Lys4 and reduced levels of methylated histone H3-Lys9. Together with the previous finding of reduced levels of cytosine methylation, these data indicate that cells lacking CFP1 contain reduced levels of heterochromatin. Furthermore, ES cells lacking CFP1 exhibit a 4-fold excess of histone H3-Lys4 methylation following induction of differentiation, indicating that CFP1 restricts the activity of the Set1 histone methyltransferase complex. These results reveal a mammalian counterpart to the yeast Set1/COMPASS complex. The presence of CFP1 in this complex implicates this protein as a critical epigenetic regulator of histone modification in addition to cytosine methylation and reveals one mechanism by which this protein intersects with the epigenetic machinery.  相似文献   

9.
10.
Aurora B localization to mitotic centromeres, which is required for proper chromosome alignment during mitosis, relies on Haspin-dependent histone H3 phosphorylation and on Bub1-dependent histone H2A phosphorylation-which interacts with Borealin through a Shugoshin (Sgo) intermediate. We demonstrate that Mps1 stimulates the latter recruitment axis. Mps1 activity enhances H2A-T120ph and is critical for Sgo1 recruitment to centromeres, thereby promoting Aurora B centromere recruitment in early mitosis. Importantly, chromosome biorientation defects caused by Mps1 inhibition are improved by restoring Aurora B centromere recruitment. As Mps1 kinetochore localization reciprocally depends on Aurora B, we propose that this Aurora B-Mps1 recruitment circuitry cooperates with the Aurora B-Haspin feedback loop to ensure rapid centromere accumulation of Aurora B at the onset of mitosis.  相似文献   

11.
The spatial and temporal control of histone modifications is crucial for precise regulation of chromatin structure and function. Here we report that phosphorylation of H2A at threonine 119 (T119) is enriched at centromere regions in Drosophila mitosis. We found that the Aurora B kinase complex is essential for this phosphorylation at centromeres, while Polo kinase is required to down-regulate H2A phosphorylation on chromosome arms in mitosis. Cyclin B degradation triggers loss of centromeric H2A phosphorylation at anaphase onset. Epistasis analysis indicated that Polo functions upstream of the H2A kinase NHK-1 but parallel to Aurora B. Therefore, multiple mitotic kinases work together to specify the spatial and temporal pattern of H2A T119 phosphorylation.  相似文献   

12.
Cell cycle progression is regulated by members of the cyclin-dependent kinase (CDK), Polo and Aurora families of protein kinases. The levels of expression and localization of the key regulatory kinases are themselves subject to very tight control. There is increasing evidence that crosstalk between the mitotic kinases provides for an additional level of regulation. We have previously shown that Aurora B activates Polo kinase at the centromere in mitosis, and that the interaction between Polo and the chromosomal passenger complex (CPC) component INCENP is essential in this activation. In this report, we show that Polo kinase is required for the correct localization and activity of the CPC in meiosis and mitosis. Study of the phenotype of different polo allele combinations compared to the effect of chemical inhibition revealed significant differences in the localization and activity of the CPC in diploid tissues. Our results shed new light on the mechanisms that control the activity of Aurora B in meiosis and mitosis.  相似文献   

13.
In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G2/M transition. We find that activation of Aurora A first occurs at centrosomes at late G2 and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.  相似文献   

14.
The Aurora kinase family is a well-characterized serine/threonine protein kinase family that regulates different processes of mitotic events. Although functions of animal and yeast Aurora kinases have been analyzed, plant aurora kinases were not identified and characterized. We identified three Aurora kinase orthologs in Arabidopsis thaliana and designated these as AtAUR1, AtAUR2, and AtAUR3. These AtAURs could phosphorylate serine 10 in histone H3, in vitro. Dynamic analyses of GFP-fused AtAUR proteins revealed that AtAUR1 and AtAUR2 localized at the nuclear membrane in interphase and located in mitotic spindles during cell division. AtAUR1 also localized in the cell plates. AtAUR3 showed dot-like distribution on condensed chromosomes at prophase and then localized at the metaphase plate. At late anaphase, AtAUR3 is evenly localized on chromosomes. The localization of AtAUR3 during mitosis is very similar to that of phosphorylated histone H3. Interestingly, an overexpression of AtAUR3 induces disassembly of spindle microtubules and alteration of orientation of cell division. Our results indicate that plant Aurora kinases have different characters from that of Aurora kinases of other eukaryotes.†These authors equally contributed to this work  相似文献   

15.
During mitosis, chromosome condensation takes place, which entails the conversion of interphase chromatin into compacted mitotic chromosomes. Condensin I is a five-subunit protein complex that plays a central role in this process. Condensin I is targeted to chromosomes in a mitosis-specific manner, which is regulated by phosphorylation by mitotic kinases. Phosphorylation of histone H3at serine 10 (Ser10) occurs during mitosis and its physiological role is a longstanding question. We examined the function of Aurora B, a kinase that phosphorylates Ser10, in the chromosomal binding of condensin I and mitotic chromosome condensation, using an in vitro system derived from Xenopus egg extract. Aurora B depletion from a mitotic egg extract resulted in the loss of H3 phosphorylation, accompanied with a 50% reduction of chromosomal targeting of condensin I. Alternatively, a portion of condensin I was bound to sperm chromatin, and chromosome-like structures were assembled when okadaic acid (OA) was supplemented in an interphase extract that lacks Cdc2 activity. However, chromosomal targeting of condensin I was abolished when Aurora B was depleted from the OA-treated interphase extract. From these results, it is suggested that Aurora B-dependent and Cdc2-independent pathways of the chromosomal targeting of condensin I are present.  相似文献   

16.
De Souza CP  Osmani AH  Wu LP  Spotts JL  Osmani SA 《Cell》2000,102(3):293-302
Phosphorylation of histone H3 serine 10 correlates with chromosome condensation and is required for normal chromosome segregation in Tetrahymena. This phosphorylation is dependent upon activation of the NIMA kinase in Aspergillus nidulans. NIMA expression also induces Ser-10 phosphorylation inappropriately in S phase-arrested cells and in the absence of NIMX(cdc2) activity. At mitosis, NIMA becomes enriched on chromatin and subsequently localizes to the mitotic spindle and spindle pole bodies. The chromatin-like localization of NIMA early in mitosis is tightly correlated with histone H3 phosphorylation. Finally, NIMA can phosphorylate histone H3 Ser-10 in vitro, suggesting that NIMA is a mitotic histone H3 kinase, perhaps helping to explain how NIMA promotes chromatin condensation in A. nidulans and when expressed in other eukaryotes.  相似文献   

17.
Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2–Rpb1–interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.  相似文献   

18.
19.
Function and regulation of Aurora/Ipllp kinase family in cell division   总被引:2,自引:0,他引:2  
Ke YW  Dou Z  Zhang J  Yao XB 《Cell research》2003,13(2):69-81
During mitosis,the parent cell distributes its genetic materials equally into two daughter cells through chromosome segregation,a complex movements orchestrated by mitotic kinases and its effector proteins.Faithful chromosome segregation and cytokinesis ensure that each daughter cell receives a full copy of genetic materials of parent cell.Defects in these processes can lead to aneuploidy or polyploidy.Aurora/Ipllp family, a class of conserved serine/threonine kinases,plays key roles in chromosome segregation and cytokinesis.This article highlights the function and regulation of Aurora/Ipllp family in mitosis and provides potential links between aberrant regulation of Aurora/Ipllp kinases and pathogenesis of human cancer.  相似文献   

20.
Mitosis must faithfully divide the genome such that each progeny inherits the same genetic material. DNA condensation is crucial in ensuring that chromosomes are correctly attached to the mitotic spindle for segregation, preventing DNA breaks or constrictions from the contractile ring. Histones form an octameric complex of basic proteins important in regulating DNA organization and accessibility. Histone post-translational modifications are altered during mitosis, although the roles of these post-translational modifications remain poorly characterized. Here, we report that N-acetylglucosamine (O-GlcNAc) transferase (OGT), the enzyme catalyzing the addition of O-GlcNAc moieties to nuclear and cytoplasmic proteins at serine and threonine residues, regulates some aspects of mitotic chromatin dynamics. OGT protein amounts decrease during M phase. Modest overexpression of OGT alters mitotic histone post-translational modifications at Lys-9, Ser-10, Arg-17, and Lys-27 of histone H3. Overexpression of OGT also prevents mitotic phosphorylation of coactivator-associated arginine methyltransferase 1 (CARM1) and prevents its correct cellular localization during mitosis. Moreover, OGT overexpression results in an increase in abnormal chromosomal bridge formation. Together, these results show that regulating the amount of OGT during mitosis is important in ensuring correct chromosomal segregation during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号