共查询到20条相似文献,搜索用时 15 毫秒
1.
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low–nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals. 相似文献
2.
3.
Sivakumar Ramadoss Xiaohong Chen Cun-Yu Wang 《The Journal of biological chemistry》2012,287(53):44508-44517
Epithelial-mesenchymal transition (EMT) is a critical event that occurs in embryonic development, tissue repair control, organ fibrosis, and carcinoma invasion and metastasis. Although significant progress has been made in understanding the molecular regulation of EMT, little is known about how chromatin is modified in EMT. Chromatin modifications through histone acetylation and methylation determine the precise control of gene expression. Recently, histone demethylases were found to play important roles in gene expression through demethylating mono-, di-, or trimethylated lysines. KDM6B (also known as JMJD3) is a histone demethylase that might activate gene expression by removing repressive histone H3 lysine 27 trimethylation marks from chromatin. Here we report that KDM6B played a permissive role in TGF-β-induced EMT in mammary epithelial cells by stimulating SNAI1 expression. KDM6B was induced by TGF-β, and the knockdown of KDM6B inhibited EMT induced by TGF-β. Conversely, overexpression of KDM6B induced the expression of mesenchymal genes and promoted EMT. Chromatin immunoprecipitation (ChIP) assays revealed that KDM6B promoted SNAI1 expression by removing histone H3 lysine trimethylation marks. Consistently, our analysis of the Oncomine database found that KDM6B expression was significantly increased in invasive breast carcinoma compared with normal breast tissues. The knockdown of KDM6B significantly inhibited breast cancer cell invasion. Collectively, our study uncovers a novel epigenetic mechanism regulating EMT and tumor cell invasion, and has important implication in targeting cancer metastasis. 相似文献
4.
Huang Wei Li Daping Zheng Qing Li Qiang Tao Bo 《Doklady. Biochemistry and biophysics》2021,500(1):347-353
Doklady Biochemistry and Biophysics - The present study was aimed to investigate the effect of isoxanthanol-nanoparticles (IXNP) on proliferation of osteosarcoma cells and evaluate the underlying... 相似文献
5.
Ina Kycia Srikanth Kudithipudi Raluca Tamas Goran Kungulovski Arunkumar Dhayalan Albert Jeltsch 《Journal of molecular biology》2014
PHF1 associates with the Polycomb repressive complex 2 and it was demonstrated to stimulate its H3K27-trimethylation activity. We studied the interaction of the PHF1 Tudor domain with modified histone peptides and found that it recognizes H3K36me3 and H3tK27me3 (on the histone variant H3t) and that it uses the same trimethyllysine binding pocket for the interaction with both peptides. Since both peptide sequences are very different, this result indicates that reading domains can have dual specificities. Sub-nuclear localization studies of full-length PHF1 in human HEK293 cells revealed that it co-localizes with K27me3, but not with K36me3, and that this co-localization depends on the trimethyllysine binding pocket indicating that K27me3 is an in vivo target for the PHF1 Tudor domain. Our data suggest that PHF1 binds to H3tK27me3 in human chromatin, and H3t has a more general role in Polycomb regulation. 相似文献
6.
7.
Mohammad S. Eram Susan P. Bustos Evelyne Lima-Fernandes Alena Siarheyeva Guillermo Senisterra Taraneh Hajian Irene Chau Shili Duan Hong Wu Ludmila Dombrovski Matthieu Schapira Cheryl H. Arrowsmith Masoud Vedadi 《The Journal of biological chemistry》2014,289(17):12177-12188
PRDM9 (PR domain-containing protein 9) is a meiosis-specific protein that trimethylates H3K4 and controls the activation of recombination hot spots. It is an essential enzyme in the progression of early meiotic prophase. Disruption of the PRDM9 gene results in sterility in mice. In human, several PRDM9 SNPs have been implicated in sterility as well. Here we report on kinetic studies of H3K4 methylation by PRDM9 in vitro indicating that PRDM9 is a highly active histone methyltransferase catalyzing mono-, di-, and trimethylation of the H3K4 mark. Screening for other potential histone marks, we identified H3K36 as a second histone residue that could also be mono-, di-, and trimethylated by PRDM9 as efficiently as H3K4. Overexpression of PRDM9 in HEK293 cells also resulted in a significant increase in trimethylated H3K36 and H3K4 further confirming our in vitro observations. Our findings indicate that PRDM9 may play critical roles through H3K36 trimethylation in cells. 相似文献
8.
组蛋白3赖氨酸27(histone 3 lysine 27, H3K27)去甲基化酶UTX(ubiquitously transcribed tetratricopeptide repeat on chromosome X, UTX)为X染色体上重复的转录三十四肽,是组蛋白3赖氨酸4(histone 3 lysine 4, H3K4)甲基转移酶复合物MLL2(mixed-lineage leukemia 2, MLL2)中的一员,可调节同源基因HOX(homeobox, HOX)和视网膜母细胞瘤基因RB(retinoblastoma, RB)转录谱系. UTX与BRG1-SWI/SNF重塑复合物(Brg1-containing ATPase-dependent Swi/Snf chromatin-remodeling complex, BRG1-SWI/SNF)相互作用促进染色质重塑. 因其在细胞的正确再编程、胚胎发育和组织特异性分化中扮演重要角色,UTX失活或缺失会导致癌症、胚胎发育缺陷等疾病的发生. 本文将对近年来UTX在胚胎发育及与疾病关系方面的研究进展做一综述. 相似文献
9.
在人的某些癌症细胞中,组蛋白H3K27me3甲基化酶EZH2基因存在过表达的现象,很多研究已经证明,这可能是受MEK ERK信号通路调控的.为了确定这种调控模式在小鼠细胞系中是否同样存在,以及MEK ERK信号通路是否同时调控H3K27me3甲基化酶EZH1基因和去甲基化酶UTX、JMJD3基因的表达,用RT PCR和Western印迹方法检测不同浓度的MEK ERK抑制剂U0126(0、10、20、40 μmol/L)对C2C12、C127、NIH3T3三种小鼠细胞系处理后,EZH1、EZH2基因和UTX、JMJD3基因表达变化.结果显示:MEK-ERK抑制剂处理后,3种细胞中EZH1和EZH2基因的表达与对照相比都有不同程度的降低,其中EZH2基因表达变化在C2C12、NIH3T3两种细胞达到显著水平(P<0.05). H3K27me3去甲基化酶UTX、JMJD3基因在3种细胞中表达均有升高,JMJD3升高达到显著水平(P<0.05).因此,在小鼠细胞系MEK ERK信号通路可能参与调控EZH2、JMJD3基因的表达,但对EZH1、UTX基因的表达调控作用不明显.
关键词MEK ERK信号通路; 相似文献
10.
11.
12.
Qingfeng Chen Xiangsong Chen Quan Wang Faben Zhang Zhiyong Lou Qifa Zhang Dao-Xiu Zhou 《PLoS genetics》2013,9(1)
Histone lysine methylation is an important epigenetic modification in regulating chromatin structure and gene expression. Histone H3 lysine 4 methylation (H3K4me), which can be in a mono-, di-, or trimethylated state, has been shown to play an important role in gene expression involved in plant developmental control and stress adaptation. However, the resetting mechanism of this epigenetic modification is not yet fully understood. In this work, we identified a JmjC domain-containing protein, JMJ703, as a histone lysine demethylase that specifically reverses all three forms of H3K4me in rice. Loss-of-function mutation of the gene affected stem elongation and plant growth, which may be related to increased expression of cytokinin oxidase genes in the mutant. Analysis of crystal structure of the catalytic core domain (c-JMJ703) of the protein revealed a general structural similarity with mammalian and yeast JMJD2 proteins that are H3K9 and H3K36 demethylases. However, several specific features were observed in the structure of c-JMJ703. Key residues that interact with cofactors Fe(II) and N-oxalylglycine and the methylated H3K4 substrate peptide were identified and were shown to be essential for the demethylase activity in vivo. Several key residues are specifically conserved in known H3K4 demethylases, suggesting that they may be involved in the specificity for H3K4 demethylation. 相似文献
13.
Tiantian Li Xiangsong Chen Xiaochao Zhong Yu Zhao Xiaoyun Liu Shaoli Zhou Saifeng Cheng Dao-Xiu Zhou 《The Plant cell》2013,25(11):4725-4736
Histone methylation is an important epigenetic modification in chromatin function, genome activity, and gene regulation. Dimethylated or trimethylated histone H3 lysine 27 (H3K27me2/3) marks silent or repressed genes involved in developmental processes and stress responses in plants. However, the role and the mechanism of the dynamic removal of H3K27me2/3 during gene activation remain unclear. Here, we show that the rice (Oryza sativa) Jumonji C (jmjC) protein gene JMJ705 encodes a histone lysine demethylase that specifically reverses H3K27me2/3. The expression of JMJ705 is induced by stress signals and during pathogen infection. Overexpression of the gene reduces the resting level of H3K27me2/3 resulting in preferential activation of H3K27me3-marked biotic stress-responsive genes and enhances rice resistance to the bacterial blight disease pathogen Xanthomonas oryzae pathovar oryzae. Mutation of the gene reduces plant resistance to the pathogen. Further analysis revealed that JMJ705 is involved in methyl jasmonate–induced dynamic removal of H3K27me3 and gene activation. The results suggest that JMJ705 is a biotic stress-responsive H3K27me2/3 demethylase that may remove H3K27me3 from marked defense-related genes and increase their basal and induced expression during pathogen infection. 相似文献
14.
《Epigenetics》2013,8(2):114-118
It is now estimated that 150-200 genes clustered in several discrete regions escape X inactivation in somatic cells of human females by unknown mechanisms. Here, we show that although the human female inactive X chromosome is largely devoid of histone 3 lysine 4 trimethylation (H3K4me3), regions that are known to escape X inactivation, including the pseudoautosomal regions, are enriched with this modification. Also, H3K4me3, unlike H3K4me2 and H4 and H3 acetylation, is restricted to discrete regions on metaphase chromosomes. In contrast to humans, there are only a few genes that are known to escape X inactivation in the mouse. Therefore, we examined mouse female somatic cells with H3K4me3 to identify candidate regions with genes that escape X inactivation. We found the mouse female inactive X in somatic cells and the male inactive X in meiosis to have seven discrete regions that are enriched with H3K4me3. Furthermore, RNA polymerase II is largely excluded from the XY body at male pachytene except for several discrete regions on the X and Y suggesting the presence of regions that also escape sex chromosome inactivation during male meiosis. 相似文献
15.
16.
17.
18.
Daria Grafodatskaya Barian HY Chung Darci T Butcher Andrei L Turinsky Sarah J Goodman Sana Choufani Yi-An Chen Youliang Lou Chunhua Zhao Rageen Rajendram Fatima E Abidi Cindy Skinner James Stavropoulos Carolyn A Bondy Jill Hamilton Shoshana Wodak Stephen W Scherer Charles E Schwartz Rosanna Weksberg 《BMC medical genomics》2013,6(1):1-18
Background
A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.Results
Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.Conclusions
We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain. 相似文献19.
20.
Definitive endoderm differentiation is crucial for generating respiratory and
gastrointestinal organs including pancreas and liver. However, whether epigenetic
regulation contributes to this process is unknown. Here, we show that the H3K27me3
demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human
ESCs. Knockdown of KDM6A or KDM6B impairs endoderm differentiation, which can be rescued
by sequential treatment with WNT agonist and antagonist. KDM6A and KDM6B contribute to the
activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are
required for mesendoderm and definitive endoderm differentiation, respectively. Our study
not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm
differentiation, but also reveals that they achieve this through modulating the WNT
signaling pathway. 相似文献