首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This work describes the enzymatic transesterification of the oil extracted from SCGs for synthesis of biodiesel as a promising alternative to diesel fuels based on petroleum. Biocatalysts from various sources were tested for biodiesel synthesis using coffee oil among which CaCO3- immobilized Staphylococcus aureus and Bacillus stearothermophilus showed the highest conversion yields (61 ± 2.64% and 64.3 ± 1.53%, respectively) in 4 h. In further optimizing reaction parameters, methanol to oil molar ratio, biocatalyst quantity, water content, as well as incubation time and temperature markedly improved oil-to-biodiesel conversion up to 99.33 ± 0.57 % in a solvent free reaction after 12 h at 55 °C. A mixture of inexpensive CaCO3-immobilized bacterial lipases at a 1:1 ratio was the best environment-friendly catalyst for biofuel synthesis as well as the ideal trade-off between conversion and cost. Obtained coffee biodiesel remained stable beyond 40 days at ambient storage conditions and its chemical characteristics were comparable to those of other known biodiesels according to the European requirements (EN14214). Collectively, SCGs, after oil extraction, could be an ideal substrate for the production of an environment-friendly biodiesel by using appropriate mixture of CaCO3-immobilized lipases.  相似文献   

2.
Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.  相似文献   

3.
Biotechnological production of biodiesel has attracted considerable attention during the past decade compared to chemical-catalysed production since biocatalysis-mediated transesterification has many advantages. Currently, there are extensive reports on enzyme-catalysed transesterification for biodiesel production; the related research can be classified into immobilised-extracellular and immobilised-intracellular biocatalysis and this review focusses on these forms of biocatalyst for biodiesel production. The optimisation of the most important operating conditions affecting lipase-catalysed transesterification and the yield of alkyl esters, such as the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol, are discussed. However, there is still a need to optimise lipase-catalysed transesterification and reduce the cost of lipase production before it is applied commercially. Optimisation research of lipase-catalysed transesterification could include development of new reactor systems with immobilised biocatalysts, the use of lipases tolerant to organic solvents, intracellular lipases (whole microbial cells) and genetically modified microorganisms (intelligent yeasts). Biodiesel fuel is expensive in comparison with petroleum-based fuel and 60–70% of the cost is associated with feedstock oil and enzyme. Therefore ways of reducing the cost of biodiesel with respect to enzyme and substrate oils reported in literature are also presented.  相似文献   

4.
Abstract

The world's energy supply is mainly composed of fossil fuels, which are a non-renewable source of energy that is rapidly running out. To overcome this concern, industry has been focusing on the production of biofuels such as biodiesel. A range of approaches has been considered to transform oils into applicable biodiesel: dilutions, microemulsifications, pyrolysis and transesterification. The latter method consists of the conversion of triglycerides to a mixture of alkyl esters and glycerol, in the presence of an acyl acceptor and a catalyst. Due to high selectivity when using enzymes as catalysts, and mild operating conditions, biocatalytic transesterification has proven to be an efficient method. Cutinase, from the superfamily α/β hydrolases, is an enzyme with lipolytic activity that effectively catalyses transesterification reactions. This article highlights the use of cutinase microencapsulated in bis(2ethylhexyl) sodium sulfosuccinate (AOT)-reversed micelles to perform the biocatalytic transesterification of triglycerides, with low chain-length alcohols (e.g. methanol), in organic media to produce biodiesel.  相似文献   

5.
The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.  相似文献   

6.
黄晶  袁丽红  孙镇 《微生物学报》2011,51(4):488-494
[目的]分离筛选具有脂解麻疯树油能力的脂肪酶产生菌株,为以麻疯树油为原料酶法生产生物柴油奠定基础.[方法]以麻疯树油为唯一碳源,从麻疯树种子粉末处理过的土壤中分离筛选出1株具有脂解疯树油能力的脂肪酶产生菌,考察该菌株及其脂肪酶对有机溶剂耐受性以及脂肪酶催化酯化和转酯反应的能力,并通过生理生化特征和16S rDNA序列分...  相似文献   

7.
Biodiesel, chemically defined as monoalkyl esters of long chain fatty acids, are derived from renewable feed stocks like vegetable oils and animal fats. It is produced by both batch and continuous transesterification processes in which, oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The conventional method of producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to as alcoholysis, a form of transesterification reaction or through an interesterification reaction. In order to increase the cost effectiveness of the process, the enzymes are immobilized using a suitable matrix. The use of immobilized lipases and whole cells may lower the overall cost, while presenting less downstream processing problems. Main focus of this paper is to discuss the important parameters that affect the biodiesel yield, various immobilization techniques employed, mechanisms and kinetics of transesterification reaction and the recent advances in continuous transesterification processes.  相似文献   

8.
脂肪酶是工业领域应用非常广泛的一类绿色生物催化剂,由于脂肪酶可催化酯水解、酯化、转酯化、醇解和氨解等多种反应,在食品加工,有机合成,制备生物柴油等方面均得到了较为广泛的应用,是目前的研究热点.微生物是脂肪酶的重要来源之一,其中酵母脂肪酶被认为是非常安全的一类脂肪酶,也是应用最为广泛的一类脂肪酶.该文介绍了酵母脂肪酶的制备和应用研究概况,重点综述了其在多个应用领域中的最新研究进展.挖掘更多的新型高活性脂肪酶,降低脂肪酶的生产成本,提高酶的重复使用率是今后脂肪酶应用研究亟待解决的问题.  相似文献   

9.
Recently, with the global shortage of fossil fuels, excessive increase in the price of crude oil and increased environmental concerns have resulted in the rapid growth in biodiesel production. The central reaction in the biodiesel production is the transesterification reaction which could be catalyzed either chemically or enzymatically. Enzymatic transesterification has certain advantages over the chemical catalysis of transesterification, as it is less energy intensive, allows easy recovery of glycerol and the transesterification of glycerides with high free fatty acid contents. Limitations of the enzyme catalyzed reactions include high cost of enzyme, low yield, high reaction time and the amount of water and organic solvents in the reaction mixture. Researchers have been trying to overcome these limitations in the enzyme catalyzed transesterification reaction. This paper is meant to review the latest development in the field of lipase catalyzed transesterification of biologically derived oil to produce biodiesel.  相似文献   

10.
脂肪酶协同催化猪油合成生物柴油工艺研究   总被引:1,自引:0,他引:1  
探讨了以乙酸甲酯为酰基受体两种脂肪酶协同催化猪油转酯合成生物柴油的工艺条件。首先利用单因子试验确定2种固定化脂肪酶Novozym435、Lipozyme TLIM单独作为催化剂时的最佳酶用量为40%,反应温度为50℃,乙酸甲酯用量为14(相对于油的摩尔比)。在此基础上,采用3因素5水平和3个中心点的中心组分旋转设计法研究了上述2种脂肪酶协同使用时脂肪酶用量(g/g)、混合酶的配比(%/%)以及乙酸甲酯用量诸因素共同作用对转酯反应转化率的影响。优化后的反应条件为:总酶用量为40%,混合酶配比为50/50,乙酸甲酯用量为14,在该条件下甲酯得率可达97.6%,比同质量的Novozym435、Lipozyme TLIM的催化活性分别高出7.6%、22.3%。表明脂肪酶协同催化猪油合成生物柴油工艺可以较好地提高甲酯得率,并且节约生产成本。  相似文献   

11.
Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.  相似文献   

12.
Discovery of an alternative fuel is now an urgent matter because of the impending issue of oil depletion. Lipids synthesized in algal cells called triacylglycerols (TAGs) are thought to be of the most value as a potential biofuel source because they can use transesterification to manufacture biodiesel. Biodiesel is deemed as a good solution to overcoming the problem of oil depletion since it is capable of providing good performance similar to that of petroleum. Expression of several genomic sequences, including glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, and phospholipid:diacylglycerol acyltransferase, can be useful for manipulating metabolic pathways for biofuel production. In this study, we found this approach indeed increased the storage lipid content of C. minutissima UTEX 2219 up to 2-fold over that of wild type. Thus, we conclude this approach can be used with the biodiesel production platform of C. minutissima UTEX 2219 for high lipid production that will, in turn, enhance productivity.  相似文献   

13.
《Journal of Asia》2022,25(1):101856
Lipolytic enzymes are an important group of hydrolases that have found immense industrial application in biotechnology. In this study, the ability of gut bacteria isolated from the gut of the Eri silkworm, Samia ricini, to produce lipolytic enzymes was evaluated through qualitative and quantitative assays. The results of lipase screening showed that 28 isolates had lipolytic activity. The results of 16S ribosomal RNA sequencing indicated that the genus Bacillus comprised majority of the lipolytic bacterial isolates (71%) followed by Pseudomonas (15%); whilst Acinetobacter, Enterobacter and Enterococcus comprised 11%. Lipolytic activity was found in bacteria isolates identified from all the three gut compartments of S. ricini larvae with significant activity from isolates extracted from the foregut and midgut. The lipolytic index among the bacterial isolates ranged between 0.63 and 2.81 on Rhodamine B medium, and all isolates exhibited significant lipolytic activity with p-nitrophenyl butyrate (PNPB) with specific activity ranging from 0.52 to 0.82 μmol/min/mg. The effect of pH and temperature showed that lipase activity was optimum at 37 °C and pH 7–9. A phylogenetic relationship of lipase producing gut bacteria indicated high cluster stability for isolates from different stages (>50%) suggesting that the isolates persist across developmental stages of the host. The Eri silkworm is reared for its silk and the knowledge of its gut bacteria with the ability to produce lipases lies in the significance as far as boosting production of this insect via development of probiotics to enhance commercial Eri rearing. In addition, this insect may be a good resource for profiling novel lipolytic microbes for commercial production of lipases as lipases from microbial origin have assumed a great deal of importance as industrial enzymes due to their potential for use in biotechnology.  相似文献   

14.
Biodiesel has gained widespread importance in recent years as an alternative, renewable liquid transportation fuel. It is derived from natural triglycerides in the presence of an alcohol and an alkali catalyst via a transesterification reaction. To date, transesterification based on the use of chemical catalysts has been predominant for biodiesel production at the industrial scale due to its high conversion efficiency at reasonable cost. Recently, biocatalytic transesterification has received considerable attention due to its favorable conversion rate and relatively simple downstream processing demands for the recovery of by-products and purification of biodiesel. Biocatalysis of the transesterification reaction using commercially purified lipase represents a major cost constraint. However, more cost-effective techniques based on the immobilization of both extracellular and intracellular lipases on support materials facilitate the reusability of the catalyst. Other variables, including the presence of alcohol, glycerol and the activity of water can profoundly affect lipase activity and stability during the reaction. This review evaluates the current status for lipase biocatalyst-mediated production of biodiesel, and identifies the key parameters affecting lipase activity and stability. Pioneer studies on reactor-based lipase conversion of triglycerides are presented.  相似文献   

15.
Gong Y  Jiang M 《Biotechnology letters》2011,33(7):1269-1284
Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.  相似文献   

16.
Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade‐off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n‐butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes.  相似文献   

17.
During cold storage after milk collection, psychrotrophic bacterial populations dominate the microflora, and their extracellular enzymes, mainly proteases and lipases, contribute to the spoilage of dairy products. The diversity, dynamics, and enzymatic traits of culturable psychrotrophs in raw milk from four farms were investigated over a 10-month period. About 20% of the isolates were found to be novel species, indicating that there is still much to be learned about culturable psychrotrophs in raw milk. The psychrotrophic isolates were identified and classified in seven classes. Three classes were predominant, with high species richness (18 to 21 species per class) in different seasons of the year: Gammaproteobacteria in spring and winter, Bacilli in summer, and Actinobacteria in autumn. The four minor classes were Alphaproteobacteria, Betaproteobacteria, Flavobacteria, and Sphingobacteria. The dominant classes were found in all four dairies, although every dairy had its own unique "bacterial profile." Most but not all bacterial isolates had either lipolytic or both lipolytic and proteolytic activities. Only a few isolates showed proteolytic activity alone. The dominant genera, Pseudomonas and Acinetobacter (Gammaproteobacteria), showed mainly lipolytic activity, Microbacterium (Actinobacteria) was highly lipolytic and proteolytic, and the lactic acid bacteria (Lactococcus and Leuconostoc) displayed very minor enzymatic ability. Hence, the composition of psychrotrophic bacterial flora in raw milk has an important role in the determination of milk quality. Monitoring the dominant psychrotrophic species responsible for the production of heat-stable proteolytic and lipolytic enzymes offers a sensitive and efficient tool for maintaining better milk quality in the milk industry.  相似文献   

18.
The effectiveness of lipase immobilized on ceramic beads, in the production of biodiesel from simulated waste cooking oil in organic solvent system, was compared to that of free lipase. Experimental determination of the effect of concentrations of methanol on the rate of the enzymatic transesterification was experimentally determined. In addition, the effectiveness of lipases from bacterial and yeast sources for biodiesel production from simulated waste cooking oil was compared. A kinetic model was developed to describe the system, taking into consideration the mass transfer resistances of the reactants. Inhibition effects by both substrates on the interfacial reaction were also considered. The experimental results were used to determine the kinetic parameters of the proposed model and to determine the effect of mass transfer. On the other hand, it was shown that biodieasel can be produced in considerable amounts, with yield reaching 40%, in absence of organic solvent using immobilized lipase from P. cepacia on ceramic beads.  相似文献   

19.
Endophytic fungi, isolated from a number of different species of tropical plants, were investigated for lipid biodiesel precursor production. The extracts produced from liquid cultures of these fungi were subjected to acidcatalyzed transesterification reactions with methanol producing methyl esters and then analyzed through chromatographic (GC-FID) and spectrometric techniques (MS, NMR 1H). The European Standard Method, EN 14103, was used for the quantification of methyl esters extracted from the fungi of the species and genera studied. Xylariaceous fungi exhibited the highest concentrations of methyl esters (91%), and hence may be a promising source for biofuel.  相似文献   

20.
With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels’ attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号