首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Social organisms face a high risk of epidemics, and respond to this threat by combining efficient individual and collective defences against pathogens. An intriguing and little studied feature of social animals is that individual pathogen resistance may depend not only on genetic or maternal factors, but also on the social environment during development. Here, we used a cross-fostering experiment to investigate whether the pathogen resistance of individual ant workers was shaped by their own colony of origin or by the colony of origin of their carers. The origin of care-giving workers significantly influenced the ability of newly eclosed cross-fostered Formica selysi workers to resist the fungal entomopathogen Beauveria bassiana. In particular, carers that were more resistant to the fungal entomopathogen reared more resistant workers. This effect occurred in the absence of post-infection social interactions, such as trophallaxis and allogrooming. The colony of origin of eggs significantly influenced the survival of the resulting individuals in both control and pathogen treatments. There was no significant effect of the social organization (i.e. whether colonies contain a single or multiple queens) of the colony of origin of either carers or eggs. Our experiment reveals that social interactions during development play a central role in moulding the resistance of emerging workers.  相似文献   

4.
Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent–offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant–fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.  相似文献   

5.
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s−1 and intermittent changes in turning direction. By mapping the ants’ gaze directions onto the local panorama, we find that neither the ants’ gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants’ habitat and how the insects’ behaviour informs us about how they may acquire and retrieve that information.  相似文献   

6.
Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.  相似文献   

7.
Leaf-cutting ants (Atta spp.) create physical pathways to support the transport of resources on which colony growth and reproduction depend. We determined the scaling relationship between the rate of resource acquisition and the size of the trail system and foraging workforce for 18 colonies of Atta colombica and Atta cephalotes. We examined conventional power-law scaling patterns, but did so in a multivariate analysis that reveals the simultaneous effects of forager number, trail length and trail width. Foraging rate (number of resource-laden ants returning to the nest per unit time) scaled at the 0.93 power of worker numbers, the -1.02 power of total trail length and the 0.65 power of trail width. These scaling exponents indicate that individual performance declines only slightly as more foragers are recruited to the workforce, but that trail length imposes a severe penalty on the foraging rate. A model of mass traffic flow predicts the allometric patterns for workforce and trail length, although the effect of trail width is unexpected and points to the importance of the little-known mechanisms that regulate a colony's investment in trail clearance. These results provide a point of comparison for the role that resource flows may play in allometric scaling patterns in other transport-dependent entities, such as human cities.  相似文献   

8.
Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony.  相似文献   

9.
Workers have control over queen movement between cells, encouraging small groups of queens to join together to form a larger one. Single queens are more easily monoeuvred by the workers, compared to a group of queens, due to the loose arrangement of the workers surrounding the queen. Workers clustering around many queens are tightly compacted together, but are less compressed around a single queen. Some of the workers initiate colony activity by circulating each nest in an erratic, jerky manner and entering a cluster which is broken up as a result of the disturbance. The effects of worker/queen interactions in a natural nest are discussed.
Résumé Les ouvrières contrôlent les mouvements des reines entre les cellules, encourageant les petits groupes à fusionner. Les reines isolées sont plus facilement manoeuvrées par les ouvrières que les groupes de reines, par suite de la disposition désordonnée des ouvrières entourant la reine. Les ouvrières groupées autour de nombreuses reines sont étroitement serrées ensemble, et le sont moins autour d'une reine isolée. Quelques ouvrières provoquent l'activité de la colonie en circulant d'une façon irrégulière et saccadée, et en entrant dans le groupe qui se désagrège à la suite de cette perturbation. Les effets des interactions entre ouvrières et reines dans un nid naturel sont discutés.
  相似文献   

10.
Social insect colonies are like fortresses, well protected and rich in shared stored resources. This makes them ideal targets for exploitation by predators, parasites and competitors. Colonies of Myrmica rubra ants are sometimes exploited by the parasitic butterfly Maculinea alcon. Maculinea alcon gains access to the ants' nests by mimicking their cuticular hydrocarbon recognition cues, which allows the parasites to blend in with their host ants. Myrmica rubra may be particularly susceptible to exploitation in this fashion as it has large, polydomous colonies with many queens and a very viscous population structure. We studied the mutual aggressive behaviour of My. rubra colonies based on predictions for recognition effectiveness. Three hypotheses were tested: first, that aggression increases with distance (geographical, genetic and chemical); second, that the more queens present in a colony and therefore the less-related workers within a colony, the less aggressively they will behave; and that colonies facing parasitism will be more aggressive than colonies experiencing less parasite pressure. Our results confirm all these predictions, supporting flexible aggression behaviour in Myrmica ants depending on context.  相似文献   

11.
To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants'' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia antibiotics are narrow-spectrum and control a fungus (Escovopsis) that parasitizes the ants'' fungal symbiont, and (ii) MG secretions have broad-spectrum activity and protect ants and brood. We assessed the relative importance of these lines of defence, and their activity spectra, by scoring abundance of visible Pseudonocardia for nine species from five genera and measuring rates of MG grooming after challenging ants with disease agents of differing virulence. Atta and Sericomyrmex have lost or greatly reduced the abundance of visible bacteria. When challenged with diverse disease agents, including Escovopsis, they significantly increased MG grooming rates and expanded the range of targets. By contrast, species of Acromyrmex and Trachymyrmex maintain abundant Pseudonocardia. When challenged, these species had lower MG grooming rates, targeted primarily to brood. More elaborate MG defences and reduced reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites.  相似文献   

12.
Social insects deploy numerous strategies against pathogens including behavioural, biochemical and immunological responses. While past research has revealed that adult social insects can generate immunity, few studies have focused on the immune function during an insect''s early life stages. We hypothesized that larvae of the black carpenter ant Camponotus pennsylvanicus vaccinated with heat-killed Serratia marcescens should be less susceptible to a challenge with an active and otherwise lethal dose of the bacterium. We compared the in vivo benefits of prior vaccination of young larvae relative to naive and ringer injected controls. Regardless of colony of origin, survival parameters of vaccinated individuals following a challenge were significantly higher than those of the other two treatments. Results support the hypothesis that ant larvae exhibit immune-priming. Based on these results, we can infer that brood care by workers does not eliminate the need for individual-level immunological responses. Focusing on these early stages of development within social insect colonies can start addressing the complex dynamics between physiological (individual level) and social (collective) immunity.  相似文献   

13.
Social interactions among diverse individuals that encounter one another in nature have often been studied among animals but rarely among microbes. For example, the evolutionary forces that determine natural frequencies of bacteria that express cooperative behaviours at low levels remain poorly understood. Natural isolates of the soil bacterium Myxococcus xanthus sampled from the same fruiting body often vary in social phenotypes, such as group swarming and multicellular development. Here, we tested whether genotypes highly proficient at swarming or development might promote the persistence of less socially proficient genotypes from the same fruiting body. Fast-swarming strains complemented slower isolates, allowing the latter to keep pace with faster strains in mixed groups. During development, one low-sporulating strain was antagonized by high sporulators, whereas others with severe developmental defects had those defects partially complemented by high-sporulating strains. Despite declining in frequency overall during competition experiments spanning multiple cycles of development, developmentally defective strains exhibited advantages during the growth phases of competitions. These results suggest that microbes with low-sociality phenotypes often benefit from interacting with more socially proficient strains. Such complementation may combine with advantages at other traits to increase equilibrium frequencies of low-sociality genotypes in natural populations.  相似文献   

14.
Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant (Formica lugubris) colonies are affected by being part of a multi‐nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.  相似文献   

15.
An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other''s hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed.  相似文献   

16.
17.
18.
Tobacco alkaloids of the anabasine type have been found or confirmed in the venom of five species of arid-dwelling Messor ants. They are frequently accompanied by alkylpyrazines. Messor mediorubra contains four alkaloids, with anabasine the major component and also minor pyrazines. Anabasine was found alone in the venom of Messor semirufus and confirmed in Messor ebeninus. Messor rugosus from Tel Aviv contained a mixture of alkaloids and pyrazines, but those from Ein Yahav contained 3-ethyl-2,5-dimethylpyrazine, some 2-phenylethylamine, and N-ethylidene 2-phenylethylamine. Messor arenarius is confirmed as having a complex but variable mixture of alkaloids and pyrazines.  相似文献   

19.
20.
Male excess mortality is widespread among mammals and frequently interpreted as a cost of sexually selected traits that enhance male reproductive success. Sex differences in the propensity to engage in risky behaviours are often invoked to explain the sex gap in survival. Here, we aim to isolate and quantify the survival consequences of two potentially risky male behavioural strategies in a small sexually monomorphic primate, the grey mouse lemur Microcebus murinus: (i) most females hibernate during a large part of the austral winter, whereas most males remain active and (ii) during the brief annual mating season males roam widely in search of receptive females. Using a 10-year capture-mark-recapture dataset from a population of M. murinus in Kirindy Forest, western Madagascar, we statistically modelled sex-specific seasonal survival probabilities. Surprisingly, we did not find any evidence for direct survival benefits of hibernation-winter survival did not differ between males and females. By contrast, during the breeding season males survived less well than females (sex gap: 16%). Consistent with the 'risky male behaviour' hypothesis, the period for lowered male survival was restricted to the short mating season. Thus, sex differences in survival in a promiscuous mammal can be substantial even in the absence of sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号