首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Zhao  Dahe  Kumar  Sumit  Zhou  Jian  Wang  Rui  Li  Ming  Xiang  Hua 《Extremophiles : life under extreme conditions》2017,21(6):1081-1090

Bioremediation in hypersaline environments is particularly challenging since the microbes that tolerate such harsh environments and degrade pollutants are quite scarce. Haloarchaea, however, due to their inherent ability to grow at high salt concentrations, hold great promise for remediating the contaminated hypersaline sites. This study aimed to isolate and characterize novel haloarchaeal strains with potentials in hydrocarbon degradation. A haloarchaeal strain IM1011 was isolated from Changlu Tanggu saltern near Da Gang Oilfield in Tianjin (China) by enrichment culture in hypersaline medium containing hexadecane. It could degrade 57 ± 5.2% hexadecane (5 g/L) in the presence of 3.6 M NaCl at 37 °C within 24 days. To get further insights into the mechanisms of petroleum hydrocarbon degradation in haloarchaea, complete genome (3,778,989 bp) of IM1011 was sequenced. Phylogenetic analysis of 16S rRNA gene, RNA polymerase beta-subunit (rpoB’) gene and of the complete genome suggested IM1011 to be a new species in Halorientalis genus, and the name Halorientalis hydrocarbonoclasticus sp. nov., is proposed. Notably, with insights from the IM1011 genome sequence, the involvement of diverse alkane hydroxylase enzymes and an intact β-oxidation pathway in hexadecane biodegradation was predicted. This is the first hexadecane-degrading strain from Halorientalis genus, of which the genome sequence information would be helpful for further dissecting the hydrocarbon degradation by haloarchaea and for their application in bioremediation of oil-polluted hypersaline environments.

  相似文献   

2.
3.
The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5°C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C10 to C21 alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5°C. Mineralization of hexadecane at 5°C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-dodecanol and 2-dodecanone, respectively) by solid-phase microextraction–gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25°C.  相似文献   

4.
Summary The degradation of hexadecane and tetradecane by Acetobacter rancens CCM 1774 was investigated. It was found that this strain is able to grow to a limited extent on hexadecane as a carbon source. The occurrence of n-alkanoic acids and alcohols among the reaction products of growing as well as resting cells indicates a monoterminal degradation of long-chain alkanes. Both alkane-grown and glucose-grown resting cells exhibited alkane oxidizing activities which were not influenced by chloramphenicol. This suggested a constitutive nature of the appropriate enzymes.  相似文献   

5.
A new piezotolerant alkane‐degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (≈ 90%) during 13 days of incubation. However, the lipid composition of the cells sharply differed under both pressure conditions. At 0.1 MPa, M. hydrocarbonoclasticus #5 biosynthesized large amounts (≈ 62% of the total cellular lipids) of hexadecane‐derived wax esters (WEs), which accumulated in the cells under the form of individual lipid bodies. Intracellular WEs were also synthesized at 35 MPa, but their proportion was half that at 0.1 MPa. This lower WE content at high pressure was balanced by an increase in the total cellular phospholipid content. The chemical composition of WEs formed under both pressure conditions also strongly differed. Saturated WEs were preferentially formed at 0.1 MPa whereas diunsaturated WEs dominated at 35 MPa. This increase of the unsaturation ratio of WEs resembled the one classically observed for bacterial membrane lipid homeostasis. Remarkably, the unsaturation ratio of membrane fatty acids of M. hydrocarbonoclasticus grown at 35 MPa was only slightly higher than at 0.1 MPa. Overall, the results suggest that intracellular WEs and phospholipids play complementary roles in the physiological adaptation of strain #5 to different hydrostatic pressures.  相似文献   

6.
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.  相似文献   

7.
Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC–MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n-C14) or branched (pristane) alkanes. During growth on n-C14, A. borkumensis expressed a complete pathway for the terminal oxidation of n-alkanes to their corresponding acyl-CoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for β-oxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of β-oxidation proteins to overcome steric hinderance from branched substrates.  相似文献   

8.
9.
A strain of long-chain alkane–degrading bacteria, BT1A, was isolated from oil-contaminated soil in Diyarbak?r, in the southeast of Turkey. Morphological, biochemical, and physiological characterization and 16S rRNA gene sequence analysis showed that the strain BT1A was a member of Acinetobacter genus, and it was found to be closely related to Acinetobacter baumannii. The strain BT1A was able to utilize crude petroleum as carbon and energy sources in order to grow. Among the aliphatic hydrocarbons, growth was observed only in the medium containing long-chain alkanes (tridecane, pentadecane, and hexadecane) and squalene. Hexadecane was the most preferred hydrocarbon among the long-chain alkanes. Gas chromatography–mass spectrometry (GC-MS) analysis showed that BT1A degraded 83% of n-alkanes of 1% crude oil in 7 days. The present study indicates that the isolated strain can well be used for biodegradation of hydrocarbons in oil-contaminated sites.  相似文献   

10.
Aims: Investigation of the alkane‐degrading properties of Dietzia sp. H0B, one of the isolated Corynebacterineae strains that became dominant after the Prestige oil spill. Methods and Results: Using molecular and chemical analyses, the alkane‐degrading properties of strain Dietzia sp. H0B were analysed. This Grampositive isolate was able to grow on n‐alkanes ranging from C12 to C38 and branched alkanes (pristane and phytane). 8‐Hexadecene was detected as an intermediate of hexadecane degradation by Dietzia H0B, suggesting a novel alkane‐degrading pathway in this strain. Three putative alkane hydroxylase genes (one alkB homologue and two CYP153 gene homologues of cytochrome P450 family) were PCR‐amplified from Dietzia H0B and differed from previously known hydroxylase genes, which might be related to the novel degrading activity observed on Dietzia H0B. The alkane degradation activity and the alkB and CYP153 gene expression were observed constitutively regardless of the presence of the substrate, suggesting additional, novel pathways for alkane degradation. Conclusions: The results from this study suggest novel alkane‐degrading pathways in Dietzia H0B and a genetic background coding for two different putative oil‐degrading enzymes, which is mostly unexplored and worth to be subject of further functional analysis. Significance and Impact of the Study: This study increases the scarce information available about the genetic background of alkane degradation in genus Dietzia and suggests new pathways and novel expression mechanisms of alkane degradation.  相似文献   

11.

Objectives

To explore Candida guilliermondii for the production of long-chain dicarboxylic acids (DCA), we performed metabolic pathway engineering aiming to prevent DCA consumption during β-oxidation, but also to increase its production via the ω-oxidation pathway.

Results

We identified the major β- and ω-oxidation pathway genes in C. guilliermondii and performed first steps in the strain improvement. A double pox disruption mutant was created that slowed growth with oleic acid but showed accelerated DCA degradation. Increase in DCA production was achieved by homologous overexpression of a plasmid borne cytochrome P450 monooxygenase gene.

Conclusion

C. guilliermondii is a promising biocatalyst for DCA production but further insight into its fatty acid metabolism is necessary.
  相似文献   

12.
Summary Cells of the yeast Lodderomyces elongisporus, precultured on glycerol, were incubated with long-chain n-alkanes. The results whow that monoterminal alkane oxidation is the main pathway of alkane degradation in the investigated yeast. The amount of diterminal activity is negligible, while subterminal degradation did not occur at all.Fatty acids were the first detectable intermediates. Using different n-alkanes, in every case the fatty acids with substrate chain length predominated in the cells. The formation of radioactive fatty acids from (1-14C)-hexadecane was time-dependent and indicated that desaturation elongation and -oxidation occurred.Extracellularly, the fatty acid pattern was similar, except for the additional presence of fatty acid methyl esters and the prevalence of octadecenoic acid after growth of cells on n-hexadecane.  相似文献   

13.
The subunit locations of the component enzymes of the pig heart trifunctional mitochondrial β-oxidation complex are suggested by analyzing the primary structure of the large subunit of this membrane-bound multienzyme complex [Yang S.-Y.et al. (1994) Biochem. biophys. Res. Commun. 198, 431–437] with those of the subunits of the E. coli fatty acid oxidation complex and the corresponding mitochondrial matrix β-oxidation enzymes. Long-chain enoyl-CoA hydratase and long-chain 3-hydroxyacyl-CoA dehydrogenase are located in the amino-terminal and the central regions of the 79 kDa polypeptide, respectively, whereas the long-chain 3-ketoacyl-CoA thiolase is associated with the 46 kDa subunit of this complex. The pig heart mitochondrial bifunctional β-oxidation enzyme is more homologous to the large subunit of the prokaryotic fatty acid oxidation complex than to the peroxisomal trifunctional β-oxidation enzyme. The evolutionary trees of 3-hydroxyacyl-CoA dehydrogenases and enoyl-CoA hydratases suggest that the mitochondrial inner membrane-bound bifunctional β-oxidation enzyme and the corresponding matrix monofunctional β-oxidation enzymes are more remotely related to each other than to their corresponding prokaryotic enzymes, and that the genes of E. coli multifunctional fatty acid oxidation protein and pig heart mitochondrial bifunctional β-oxidation enzyme diverged after the appearance of eukaryotic cells.  相似文献   

14.
15.
Summary The adaptation of Lodderomyces elongisporus cells to n-alkane utilization was found to be connected with several alterations in the enzyme pattern of the whole cell and the microsomal fraction in particular. A strong induction was found for the microsomal localized cytochrome P-450 alkane hydroxylase system and other enzymes which are directly involved in the terminal degradation pathway of n-alkanes (long-chain alcohol and aldehyde dehydrogenases, catalase).The decrease of the pO2 in the medium enhances the concentration of the constituents of the alkane hydroxylase system as well as that of several other haemoproteins (catalase, cytochrome oxidase), while the long-chain alcohol and aldehyde dehydrogenase enzymes are probably unaffected.Dedicated to Prof. Dr. W. Scheler on the occasion of his 60th birthday  相似文献   

16.
17.
18.
Hexadecane assimilation by Marinobacter hydrocarbonoclasticus SP17 occurs through the formation of a biofilm at the alkane–water interface. In this study we focused on the interactions of cells with the alkane–water interface occurring during initiation of biofilm development. The behavior of cells at the interface was apprehended by investigating alterations of the mechanical properties of the interface during cell adsorption, using dynamic drop tensiometry measurements. It was found that after having reached the hexadecane–water interface, by a purely thermal diffusion process, cells released surface‐active compounds (SACs) resulting in the formation of an interfacial visco‐elastic film. Release of SACs was an active process requiring protein synthesis. This initial interaction occurred on metabolizable as well as non‐metabolizable alkanes, indicating that at this stage cells are not affected by the nature of the alkane forming the interface. In contrast, at a later stage, the nature of the interface turned out to exert control over the behavior of the cells. The availability of a metabolizable alkane at the interface influenced cell activity, as revealed by cell cluster formation and differences in the interfacial elasticity. Biotechnol. Bioeng. 2010; 105: 461–468. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号