共查询到20条相似文献,搜索用时 15 毫秒
1.
水稻和其他禾本科植物基因组多倍体起源的证据 总被引:5,自引:0,他引:5
基因加倍(Gene duplication)被认为是进化的加速器。古老的基因组加倍事件已经在多个物种中被确定,包括酵母、脊椎动物以及拟南芥等。本研究发现水稻基因组同样存在全基因组加倍事件,大概发生在禾谷类作物分化之前,距今约7000万年。在水稻基因组中,共找到117个加倍区段(Duplicated block),分布在水稻的全部12条染色体,覆盖约60%的水稻基因组。在加倍区段,大约有20%的基因保留了加倍后的姊妹基因对(Duplicated pairs)。与此形成鲜明对照的是加倍区段的转录因子保留了60%的姊妹基因。禾本科植物全基因组加倍事件的确定对研究禾本科植物基因组的进化具有重要影响,暗示了多倍体化及随后的基因丢失、染色体重排等在禾谷类物种分化中扮演了重要角色。 相似文献
2.
The temporal distribution of gene duplication events in a set of highly conserved human gene families 总被引:13,自引:0,他引:13
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year. 相似文献
3.
植物古基因组学是基因组学一个新兴分支,从现存物种中重建其祖先基因组,推断在古历史中导致形成现存物种的进化或物种形成事件。高通量测序技术的不断革新使测序读长更长、更准确,加快了植物参考基因组序列的组装进程,为古基因组学研究提供了大批量可靠的现存物种的基因组序列资源。全基因组复制(whole-genome duplication, WGD)亦称古多倍化,使植物基因组快速重组,丢失大量基因,增加结构变异,对植物进化极其重要。本文综述了植物基因组测序与组装研究进展、植物古基因组学的原理、植物基因组WGD事件以及植物祖先基因组进化场景,并对未来植物古基因组学研究进行了展望。 相似文献
4.
Manu Kumar Gundappa Thu-Hien To Lars Grnvold Samuel A M Martin Sigbjrn Lien Juergen Geist David Hazlerigg Simen R Sandve Daniel J Macqueen 《Molecular biology and evolution》2022,39(1)
The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent “explosion” of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial “wave” of rediploidization in the late Cretaceous (85–106 Ma). This was followed by a period of relative genomic stasis lasting 17–39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events. 相似文献
5.
6.
7.
Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication. 相似文献
8.
S100 proteins are calcium-binding proteins, which exist only in vertebrates and which constitute a large protein family. The origin and evolution of the S100 family in vertebrate lineages remain a challenge. Here, we examined the synteny conservation of mammalian S100A genes by analysing the sequence of available vertebrate S100 genes in databases. Five S100A gene members, unknown previously, were identified by chromosome mapping analysis. Mammalian S100A genes are duplicated and clustered on a single chromosome while two S100A gene clusters are found on separate chromosomes in teleost fish, suggesting that S100A genes existed in fish before the fish-specific genome duplication took place. During speciation, tandem gene duplication events within the cluster of S100A genes of a given chromosome have probably led to the multiple members of the S100A gene family. These duplicated genes have been retained in the genome either by neofunctionalisation and/or subfunctionalisation or have evolved into non-coding sequences. However in vertebrate genomes, other S100 genes are also present i.e. S100P, S100B, S100G and S100Z, which exist as single copy genes distributed on different chromosomes, suggesting that they could have evolved from an ancestor different to that of the S100A genes. 相似文献
9.
It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD. 相似文献
10.
Anne-Marie Dion-C?té Radka Symonová Petr Ráb Louis Bernatchez 《Proceedings. Biological sciences / The Royal Society》2015,282(1802)
Speciation may occur when the genomes of two populations accumulate genetic incompatibilities and/or chromosomal rearrangements that prevent inter-breeding in nature. Chromosome stability is critical for survival and faithful transmission of the genome, and hybridization can compromise this. However, the role of chromosomal stability on hybrid incompatibilities has rarely been tested in recently diverged populations. Here, we test for chromosomal instability in hybrids between nascent species, the ‘dwarf’ and ‘normal’ lake whitefish (Coregonus clupeaformis). We examined chromosomes in pure embryos, and healthy and malformed backcross embryos. While pure individuals displayed chromosome numbers corresponding to the expected diploid number (2n = 80), healthy backcrosses showed evidence of mitotic instability through an increased variance of chromosome numbers within an individual. In malformed backcrosses, extensive aneuploidy corresponding to multiples of the haploid number (1n = 40, 2n = 80, 3n = 120) was found, suggesting meiotic breakdown in their F1 parent. However, no detectable chromosome rearrangements between parental forms were identified. Genomic instability through aneuploidy thus appears to contribute to reproductive isolation between dwarf and normal lake whitefish, despite their very recent divergence (approx. 15–20 000 generations). Our data suggest that genetic incompatibilities may accumulate early during speciation and limit hybridization between nascent species. 相似文献
11.
Buggs RJ 《Molecular ecology》2008,17(8):1875-1876
Populations of natural allopolyploids with available and well‐developed genomic resources are currently hard to come by. These are needed because whole genome duplication and hybridization — both combined in allopolyploids — are significant processes in evolution, especially the evolution of plants. The new characterization of a naturally occurring allopolyploid in the genus Mimulus by Sweigart et al. in this issue of Molecular Ecology is therefore to be welcomed. Mimulus is rapidly emerging as a model system for evolutionary functional genomics. Sequences of the whole genome and 200 000 expressed sequence tags of diploid M. guttatus, a putative parent of the polyploid described in this issue, will soon be available. These will facilitate investigation of the fates of genes duplicated by whole genome duplication, and their effects on morphology, mating system and ecology in natural populations. 相似文献
12.
Yan Zhong Yong Chen Danjing Zheng Jingyi Pang Ying Liu Shukai Luo Shiyuan Meng Lei Qian Dan Wei Seping Dai Renchao Zhou 《DNA research》2022,29(2)
Cercidoideae, one of the six subfamilies of Leguminosae, contains one genus Cercis with its chromosome number 2n = 14 and all other genera with 2n = 28. An allotetraploid origin hypothesis for the common ancestor of non-Cercis genera in this subfamily has been proposed; however, no chromosome-level genomes from Cercidoideae have been available to test this hypothesis. Here, we conducted a chromosome-level genome assembly of Bauhinia variegata to test this hypothesis. The assembled genome is 326.4 Mb with the scaffold N50 of 22.1 Mb and contains 37,996 protein-coding genes. The Ks distribution between gene pairs in the syntenic regions indicates two whole-genome duplications (WGDs): one is B. variegata-specific, and the other is shared among core eudicots. Although Ks between gene pairs generated by the recent WGD in Bauhinia is greater than that between Bauhinia and Cercis, the WGD was not detected in Cercis, which can be explained by an accelerated evolutionary rate in Bauhinia after divergence from Cercis. Ks distribution and phylogenetic analysis for gene pairs generated by the recent WGD in Bauhinia and their corresponding orthologs in Cercis support the allopolyploidy origin hypothesis of Bauhinia. The genome of B. variegata also provides a genomic resource for dissecting genetic basis of its ornamental traits. 相似文献
13.
Gene duplication is a major mechanism to create new genes. After gene duplication, some duplicated genes undergo functionalization, whereas others largely maintain redundant functions. Duplicated genes comprise various degrees of functional diversification in plants. However, the evolutionary fate of high and low diversified duplicates is unclear at genomic scale. To infer high and low diversified duplicates in Arabidopsis thaliana genome, we generated a prediction method for predicting whether a pair of duplicate genes was subjected to high or low diversification based on the phenotypes of knock-out mutants. Among 4,017 pairs of recently duplicated A. thaliana genes, 1,052 and 600 are high and low diversified duplicate pairs, respectively. The predictions were validated based on the phenotypes of generated knock-down transgenic plants. We determined that the high diversified duplicates resulting from tandem duplications tend to have lineage-specific functions, whereas the low diversified duplicates produced by whole-genome duplications are related to essential signaling pathways. To assess the evolutionary impact of high and low diversified duplicates in closely related species, we compared the retention rates and selection pressures on the orthologs of A. thaliana duplicates in two closely related species. Interestingly, high diversified duplicates resulting from tandem duplications tend to be retained in multiple lineages under positive selection. Low diversified duplicates by whole-genome duplications tend to be retained in multiple lineages under purifying selection. Taken together, the functional diversities determined by different duplication mechanisms had distinct effects on plant evolution. 相似文献
14.
In this work we report the genetic polymorphism of a 7-bp insertion in the 3'' untranslated region of the rabbit SRY gene. The polymorphic GAATTAA motif was found exclusively in one of the two divergent rabbit Y-chromosomal lineages, suggesting that its origin is more recent than the separation of the O. c. algirus and O. c. cuniculus Y-chromosomes. In addition, the remarkable observation of haplotypes exhibiting 0, 1 and 2 7-bp inserts in essentially all algirus populations suggests that the rabbit SRY gene is duplicated and evolving under concerted evolution. 相似文献
15.
16.
17.
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed. 相似文献
18.
19.
Elena R Toenshoff Thomas Penz Thomas Narzt Astrid Collingro Stephan Schmitz-Esser Stefan Pfeiffer Waltraud Klepal Michael Wagner Thomas Weinmaier Thomas Rattei Matthias Horn 《The ISME journal》2012,6(2):384-396
Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing <92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola'' and ‘Candidatus Ecksteinia adelgidicola'' are proposed for tentative classification. Both symbionts were present in all individuals of all investigated populations and in different adelgid life stages including eggs, suggesting vertical transmission from mother to offspring. An 85 kb genome fragment of ‘Candidatus S. adelgidicola'' was reconstructed based on a metagenomic library created from purified symbionts. Genomic features including the frequency of pseudogenes, the average length of intergenic regions and the presence of several genes which are absent in other long-term obligate symbionts, suggested that ‘Candidatus S. adelgidicola'' is an evolutionarily young bacteriocyte-associated symbiont, which has been acquired after diversification of adelgids from their aphid sister group. 相似文献
20.
Jiqiu Li Andy Fenton Lee Kettley Phillip Roberts David J. S. Montagnes 《Proceedings. Biological sciences / The Royal Society》2013,280(1768)
We propose that delayed predator–prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator–prey system (the ciliates Didinium and Paramecium), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies. 相似文献