首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This project facilitates a regional approach to conservation planning in Pennsylvania based on avian breeding habitat selection. The objectives were to: (1) determine the sensitivity of spatial pattern in avian diversity to changing thresholds of intra-guild species richness and (2) relate change of spatial pattern in avian diversity with landscape characteristics of bird Atlas blocks. Two state-wide spatial data layers, based on Landsat satellite data were constructed for this study. These regional landscape data were compared to Breeding Bird Atlas data from 1983 to 1989 using a geographic information system. Breeding bird data were recorded from 4928 blocks that form a grid covering Pennsylvania. Correlation analysis reduced landscape variables to 12 originally derived from forest, urban, roads, streams, and topographic data.Avian functional response guilds were used to analyze associations between breeding bird data and landscape variables. Functional response guilds were created by grouping organisms based on shared habitat preferences or behavioral characteristics. Most of the 18 avian guilds identified for this study were based on shared structural resource characteristics of preferred breeding habitat. Preferred structural resources frequently included the amount and type of forest. For this study, guilds separate resource characteristics by: (1) primary habitat (i.e. forest interior, forest edge), (2) area sensitivity (i.e. forest and grassland), (3) migratory status (i.e. resident, temperate, and tropical), and (4) nest placement (i.e. canopy nester, forest ground nester). Wetland obligate species were treated as a separate guild. Breeding Bird Atlas blocks were tabulated with respect to the number of species present from each guild. For a given guild, the number of its species in a block is termed guild-specific species richness. Sample blocks having high species richness for a given guild often occur adjacent or in close proximity forming spatial clusters in the landscape. Spatial coherence (adjacency/proximity) among the blocks forming these islands is shared guild-specific richness. Spatial clustered blocks of each guild represent areas that presumably possess required resources for members of that guild. Blocks having high intra-guild richness were evaluated with a group of block-level continuous variables using multiple logistic regressions. Logistic regression results indicate that a convincing connection exists between landscape properties of Breeding Bird Atlas blocks and habitat selection characteristics of guild members. Percent of forest cover and mean elevation were the most important habitat characteristics influencing intra-guild richness for most of the guilds tested. Concordance values from logistic regression were used to determine the strength of each guild model. Concordance, the proportion that represents the percent of correct guild richness predictions versus incorrect predictions, suggests a relationship between guild-rich clusters and habitat resources required by each guild. The highest concordance was for the exotics guild at 76.3% and the next highest was 74.8% for the grassland area sensitive guild. This signifies a 75% certainty that landscape variables could predict occurrence of a guild-rich block. Eight more guilds had concordance values greater than 65%.By using a guild approach, this study goes beyond total diversity to the more informative structural and functional diversity of guilds. Spatially clustered blocks of high species richness for a particular guild are more indicative of habitat availability and quality than would be the case for overall species richness. Clusters of blocks having high intra-guild species richness become candidate areas for conservation efforts.  相似文献   

2.
Although elevational patterns of species richness have been well documented, how the drivers of richness gradients vary across ecological guilds has rarely been reported. Here, we examined the effects of spatial factors (area and mid‐domain effect; MDE) and environmental factors, including metrics of climate, productivity, and plant species richness on the richness of breeding birds across different ecological guilds defined by diet and foraging strategy. We surveyed 12 elevation bands at intervals of 300 m between 1,800 and 5,400 m a.s.l using line‐transect methods throughout the wet season in the central Himalaya, China. Multiple regression models and hierarchical partitioning were used to assess the relative importance of spatial and environmental factors on overall bird richness and guild richness (i.e., the richness of species within each guild). Our results showed that richness for all birds and most guilds displayed hump‐shaped elevational trends, which peaked at an elevation of 3,300–3,600 m, although richness of ground‐feeding birds peaked at a higher elevation band (4,200–4,500 m). The Normalized Difference Vegetation Index (NDVI)—an index of primary productivity—and habitat heterogeneity were important factors in explaining overall bird richness as well as that of insectivores and omnivores, with geometric constraints (i.e., the MDE) of secondary importance. Granivore richness was not related to primary production but rather to open habitats (granivores were negatively influenced by habitat heterogeneity), where seeds might be abundant. Our findings provide direct evidence that the richness–environment relationship is often guild‐specific. Taken together, our study highlights the importance of considering how the effects of environmental and spatial factors on patterns of species richness may differ across ecological guilds, potentially leading to a deeper understanding of elevational diversity gradients and their implications for biodiversity conservation.  相似文献   

3.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

4.
Understanding the effects of anthropogenic disturbances on biodiversity is important for conservation prioritization. This study examined the effects of vegetation degradation on bird diversity in Abiata‐Shalla Lakes National Park, Ethiopia. We surveyed birds and vegetation structure between January and March 2015 in disturbed (impacted by settlement and agriculture) and undisturbed (not impacted) transects of two vegetation types (savannah woodland and gallery forest). We compared between disturbed and undisturbed transects at local (within vegetation types) and landscape (across vegetation types) levels: (a) avian species richness of the entire assemblage and feeding guilds and (b) species assemblage composition. We found significantly greater mean and total bird species richness of the entire assemblage and insectivore and granivore feeding guilds in the undisturbed transects, while the nectarivore guild was totally absent in the disturbed transects. We also found significant differences in bird species assemblage composition between the disturbed and undisturbed transects both within and across the vegetation types, and bird species assemblage composition at the landscape level was positively correlated with tree abundance and understorey vegetation height. In conclusion, our results demonstrate and add to the increasing body of evidence concerning the adverse effects of human‐induced vegetation change on bird diversity.  相似文献   

5.
Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.  相似文献   

6.
Teruaki Hino 《Oecologia》1985,65(3):442-448
Summary The relationship between the bird community and habitat structure in wind shelterbelts of Ishikari district was examined.Breeding birds were classified into nesting guilds (hole, canopy, and bush) and also into foraging guilds (outside, canopy, and bush) Both density and species richness in the outside-foraging guild were positively related to forest age variables. On the other hand, bird density in all three nesting guilds and the other two foraging guilds (canopy and bush) was correlated with the vegetation cover of their nesting or foraging sites, and species richness was positively correlated with tree species complexity variables.Bird species diversity (BSD) was closely related to tree species complexity, but not to foliage height diversity (FHD) within woods. However, if woods were re-classified into two groups such as natural and artificial and these were separately analysed, the correlation between BSD and FHD was significant.From these results, it is concluded that both FHD and tree species complexity should be considered together in order to predict BSD within forests. A new index is proposed for this purpose, and its usefulness discussed.  相似文献   

7.
We examined the effects of habitat fragmentation on the species distributions, guild membership, and community structure of old-field insects using a fine-scale experimental approach. A continuous 1-ha goldenrod field was fragmented into four treatments that varied in both patch size and degree of isolation. Each treatment was replicated four times and arranged in a Latin square design. Canopy insects in fragmented patches were sampled with sweep nets during early and late summer 1995. The species richness of insects was significantly lower in fragmented than in unfragmented treatments during July, but was similar among treatments in September. Overall community abundance showed no treatment effect during either month. We also found significant row and column effects, suggesting there was spatial heterogeneity in species richness and abundance apart from treatment effects. Differences in species richness during July were primarily due to the loss of rare species in highly fragmented plots. Overall abundance was less responsive to community change because deletions of rare species in fragmented areas were not detected in abundance analyses. Four feeding guilds showed different responses to fragmentation: the species richness of sucking herbivores and the abundance of parasitoids were significantly reduced by fragmentation but predators and chewing herbivores were largely unaffected. Analyses of a subset of individual species within guilds suggest that the greater effects of fragmentation on sucking herbivores and parasitoids may be due to the degree of habitat specificity of guild members. The effects of small-scale habitat fragmentation were therefore detectable at the level of community, guild, and individual species. Changes in species richness, guild structure and species distributions were likely due to differential effects of habitat alteration on individual movements and patch selection rather than dispersal or demographic change. Nonetheless, the selective loss of rare species, differential guild effects and changes in species occupancy that we found in this small-scale experiment are also factors that are likely to operate in fragmented habitats over broader spatial scales. Received: 11 May 1998 / Accepted: 27 September 1998  相似文献   

8.
9.
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 × 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike’s Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions.  相似文献   

10.
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

11.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

12.
Cleary DF 《Oecologia》2003,135(2):313-321
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates.The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.  相似文献   

13.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

14.
It has been suggested that variation in the proportion of species in guilds (=guild proportionality) indicates community structuring by guilds in biotic communities. This hypothesis was tested on a subthermophilous grassland and a mesotrophic meadow at a scale of 0.09 m2 based on a five-year data set. Further, variation in the total number of species, variation in the number of species belonging to a guild and non-randomness in species composition of guilds were studied. A number of criteria for guild definition were used, such as life form, Grime's C-S-R strategy, phenology, plant height, pollination and dispersal syndromes, leaf shape and anatomy and taxonomy at the family level. The observed variation in the number of guild species corresponded to the null model in which species assemblages with fixed species richness per square were randomly generated from the species pool. The observed variation in the number of guild species was often higher than the variation calculated for randomly distributed species whereas the variation in the proportion of guild species was in some cases lower than the variation calculated for randomly distributed species with fixed frequencies. Possible reasons for the discrepancy in the results based on different models are discussed. It is concluded that there is little evidence of guilds in the organization of grasslands. *** DIRECT SUPPORT *** A02DO006 00012  相似文献   

15.
Sustainable forest management (SFM), an explicit policy objective in Canada, balances social, economic and environmental values. The status and trends of forest-associated species is one indicator of SFM, though it is under utilized due to challenges with indicator selection and data availability. This paper demonstrates and tests an indicator selection methodology which combines Breeding Bird Survey (BBS) data and LandSat land cover data to identify indicator guilds, or groups of indicator species, for a series of forest composition and configuration attributes in the Great Lakes St. Lawrence forest region. Guild performance is tested at independent sites within the region and compared with that of guilds assembled using known species’ habitat preferences, and abundance trends are reported for two periods: 1990–2007 and 1967–2007. Guilds assembled using the method proposed here describe more variation in forest composition (r-sq(adj): 41–76) than those assembled using known habitat preferences alone (r-sq(adj): 17–58). Forest configuration guilds, which were not compared with existing guilds, also describe a large proportion of variation in configuration attributes (r-sq(adj): 47–76). Guild abundance remained stable over the long and short term for most guilds with the exception of the wetland guild, which increased moderately over the long-term, and the deciduous guild which increased moderately over the short-term. Despite challenges associated with the use of bird guilds as indicators of forest composition and configuration, results presented here suggest that indicator guilds may provide useful information regarding the status and trends of regional scale forest composition and configuration attributes.  相似文献   

16.
Geographic variation in species richness has been explained by different theories such as energy, productivity, energy–water balance, habitat heterogeneity, and freezing tolerance. This study determines which of these theories best account for gradients of breeding bird richness in China. In addition, we develop a best-fit model to account for the relationship between breeding bird richness and environment in China. Breeding bird species richness in 207 localities (3271 km2 per locality on average) from across China was related to thirteen environmental variables after accounting for sampling area. The Akaike's information criterion (AIC) was used to evaluate model performance. We used Moran's I to determine the magnitude of spatial autocorrelation in model residuals, and used simultaneous autoregressive model to determine coefficients of determination and AIC of explanatory variables after accounting for residual spatial autocorrelation. Of all environmental variables examined, normalized difference vegetation index, a measure of plant productivity, is the best variable to explain the variance in breeding bird richness. We found that species richness of breeding birds at the scale examined is best predicted by a combination of plant productivity, elevation range, seasonal variation in potential evapotranspiration, and mean annual temperature. These variables explained 47.3% of the variance in breeding bird richness after accounting for sampling area; most of the explained variance in richness is attributable to the first two of the four variables.  相似文献   

17.
The objectives of this work are: (1) to define spider guilds for all extant families worldwide; (2) test if guilds defined at family level are good surrogates of species guilds; (3) compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4) compare the taxonomic and functional diversity of spider assemblages and; (5) relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1) sensing, (2) sheet, (3) space, and (4) orb web weavers; (5) specialists; (6) ambush, (7) ground, and (8) other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also influenced by altitude and habitat structure.  相似文献   

18.
Quantifying biotic responses to landscape transformation is a major research focus. Most past studies have explored co‐occurrence of entire communities of a given group (e.g. birds) within largely intact ecosystems or over a limited time‐frame. By contrast, here we use data from a 15 yr experimental study, to explore intra‐guild co‐occurrence of six closely‐related and functionally‐similar sets of birds within 55 woodland fragments. Areas surrounding these remnants are undergoing transformation from grazed paddocks to Pinus radiata plantations, leading to a novel assemblage of forest and woodland birds. We sought to determine if the occurrence of a given species in a guild influenced the occurrence of other closely‐related species in that guild, and through this relationship whether there was evidence of co‐occurrence between species. After controlling for environmental and habitat variables which can affect species occurrence like time since commencement of landscape transformation, patch size and vegetation type, we found the occurrence of a given species was influenced by the occurrence of a closely‐related species in the same guild. Co‐occurrence varied among bird guilds and included: 1) positive co‐occurrence in which occurrence of one species within fragments positively affected the occurrence of another closely‐related guild member (e.g. eastern and crimson rosellas); and 2) negative co‐occurrence in which the occurrence of one species was negatively associated with the occurrence of another within the same guild (e.g. willie wagtail and grey fantail). We also identified interactions between patch size and species recording frequency within members of two guilds. For example, modelling of conditional recording frequency revealed the eastern rosella increased with increasing recordings of the crimson rosella in large patches, but decreased with increasing recordings of the crimson rosella in small patches. Our results provide empirical evidence of co‐occurrence among guild members and underscore the complexity of biotic responses to landscape transformation.  相似文献   

19.
We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC  = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC  = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.  相似文献   

20.
Biodiversity conservation and ecosystem-service provision will increasingly depend on the existence of secondary vegetation. Our success in achieving these goals will be determined by our ability to accurately estimate the structure and diversity of such communities at broad geographic scales. We examined whether the texture (the spatial variation of the image elements) of very high-resolution satellite imagery can be used for this purpose. In 14 fallows of different ages and one mature forest stand in a seasonally dry tropical forest landscape, we estimated basal area, canopy cover, stem density, species richness, Shannon index, Simpson index, and canopy height. The first six attributes were also estimated for a subset comprising the tallest plants. We calculated 40 texture variables based on the red and the near infrared bands, and EVI and NDVI, and selected the best-fit linear models describing each vegetation attribute based on them. Basal area (R 2 = 0.93), vegetation height and cover (0.89), species richness (0.87), and stand age (0.85) were the best-described attributes by two-variable models. Cross validation showed that these models had a high predictive power, and most estimated vegetation attributes were highly accurate. The success of this simple method (a single image was used and the models were linear and included very few variables) rests on the principle that image texture reflects the internal heterogeneity of successional vegetation at the proper scale. The vegetation attributes best predicted by texture are relevant in the face of two of the gravest threats to biosphere integrity: climate change and biodiversity loss. By providing reliable basal area and fallow-age estimates, image-texture analysis allows for the assessment of carbon sequestration and diversity loss rates. New and exciting research avenues open by simplifying the analysis of the extent and complexity of successional vegetation through the spatial variation of its spectral information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号