首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectivesBone tissue engineering based on adipose‐derived stem cells (ASCs) is expected to become a new treatment for diabetic osteoporosis (DOP) patients with bone defects. However, compared with control ASCs (CON‐ASCs), osteogenic potential of DOP‐ASCs is decreased, which increased the difficulty of bone reconstruction in DOP patients. Moreover, the cause of the poor osteogenesis of ASCs in a hyperglycemic microenvironment has not been elucidated. Therefore, this study explored the molecular mechanism of the decline in the osteogenic potential of DOP‐ASCs from the perspective of epigenetics to provide a possible therapeutic target for bone repair in DOP patients with bone defects.Materials and methodsAn animal model of DOP was established in mice. CON‐ASCs and DOP‐ASCs were isolated from CON and DOP mice, respectively. AK137033 small interfering RNA (SiRNA) and an AK137033 overexpression plasmid were used to regulate the expression of AK137033 in CON‐ASCs and DOP‐ASCs in vitro. Lentiviruses that carried shRNA‐AK137033 or AK137033 cDNA were used to knockdown or overexpress AK137033, respectively, in CON‐ASCs and DOP‐ASCs in vivo. Hematoxylin and eosin (H&E), Masson''s, alizarin red, and alkaline phosphatase (ALP) staining, micro‐computed tomography (Micro‐CT), flow cytometry, qPCR, western blotting, immunofluorescence, and bisulfite‐specific PCR (BSP) were used to analyze the functional changes of ASCs.ResultsThe DOP mouse model was established successfully. Compared with CON‐ASCs, AK137033 expression, the DNA methylation level of the sFrp2 promoter region, Wnt signaling pathway markers, and the osteogenic differentiation potential were decreased in DOP‐ASCs. In vitro experiments showed that AK137033 silencing inhibited the Wnt signaling pathway and osteogenic ability of CON‐ASCs by reducing the DNA methylation level in the sFrp2 promoter region. Additionally, overexpression of AK137033 in DOP‐ASCs rescued these changes caused by DOP. Moreover, the same results were obtained in vivo.ConclusionsLncRNA‐AK137033 inhibits the osteogenic potential of DOP‐ASCs by regulating the Wnt signaling pathway via modulating the DNA methylation level in the sFrp2 promoter region. This study provides an important reference to find new targets for the treatment of bone defects in DOP patients.  相似文献   

2.
3.
4.
5.
Long non-coding RNAs (lncRNAs) are key regulatory molecules involved in a variety of biological processes and human diseases. However, the pathological effects of lncRNAs on primary varicose great saphenous veins (GSVs) remain unclear. The purpose of the present study was to identify aberrantly expressed lncRNAs involved in the prevalence of GSV varicosities and predict their potential functions. Using microarray with 33,045 lncRNA and 30,215 mRNA probes, 557 lncRNAs and 980 mRNAs that differed significantly in expression between the varicose great saphenous veins and control veins were identified in six pairs of samples. These lncRNAs were sub-grouped and mRNAs expressed at different levels were clustered into several pathways with six focused on metabolic pathways. Quantitative real-time PCR replication of nine lncRNAs was performed in 32 subjects, validating six lncRNAs (AF119885, AK021444, NR_027830, G36810, NR_027927, uc.345-). A coding-non-coding gene co-expression network revealed that four of these six lncRNAs may be correlated with 11 mRNAs and pathway analysis revealed that they may be correlated with another 8 mRNAs associated with metabolic pathways. In conclusion, aberrantly expressed lncRNAs for GSV varicosities were here systematically screened and validated and their functions were predicted. These findings provide novel insight into the physiology of lncRNAs and the pathogenesis of varicose veins for further investigation. These aberrantly expressed lncRNAs may serve as new therapeutic targets for varicose veins. The Human Ethnics Committee of Shanghai East Hospital, Tongji University School of Medicine approved the study (NO.: 2011-DF-53).  相似文献   

6.
7.
Tumor necrosis factor receptor superfamily is composed of at least 26 members in the mouse, three of which exist as a cluster within the imprinted Kcnq1 domain on chromosome 7. Tnfrsf22, 23 and 26 contain typical cystein-rich domains and Tnfrsf22 and 23 can bind ligands but have no signaling capacity. Thus, they are assumed to be decoy receptors. The developmental expression profile of these genes is unknown and knowledge of their imprinting patterns is incomplete and controversial. We found that all three genes are expressed during mouse embryonic development, and that they have a strong maternal bias, indicating that they may be affected by the KvDMR, the Kcnq1 imprinting control region. We found expression of an antisense non-coding RNA, AK155734, in embryos and some neonatal tissues. This RNA overlaps the Tnfrsf22 and possibly the Tnfrsf23 coding regions and is also expressed with a maternal bias. We were interested in exploring the evolutionary origins of the three Tnfrsf genes, because they are absent in the orthologous human Kcnq1 domain. To determine whether the genes were deleted from humans or acquired in the rodent lineage, we performed phylogenetic analyses. Our data suggest that TNFRSF sequences were duplicated and/or degenerated or eliminated from the KCNQ1 region several times during the evolution of mammals. In humans, multiple mutations (point mutations and/or deletions) have accumulated on the ancestral TNFRSF, leaving a single short non-functional sequence.  相似文献   

8.
Sialidase Neu4 is reported to be dominantly expressed in the mouse brain, but its functional significance is not fully understood. We previously demonstrated that sialidase Neu3, also rich in mouse brain, is up-regulated during neuronal differentiation with involvement in acceleration of neurite formation. To elucidate physiological functions of Neu4, as well as Neu3, we determined expression during mouse brain development by quantitative RT-PCR. Expression was relatively low in the embryonic stage and then rapidly increased at 3–14 days after birth, whereas Neu3 demonstrated high levels in the embryonic stage and down-regulation after birth. Murine Neu4 was found to possess two isoforms differing in expression levels, developmental pattern, and enzymatic character. Distinct from the human isoforms, the murine forms, to a different extent, both catalyzed the removal of sialic acid from gangliosides as well as glycoproteins, and one isoform seemed to act on polysialylated NCAM efficiently, despite the low activity toward ordinary substrates. In situ hybridization demonstrated Neu4 mRNA to be present mainly in the hippocampus in which NCAM is rich and decreases after birth. During retinoic acid-induced differentiation, Neu4 expression was down-regulated in Neuro2a cells. Overexpression of Neu4 resulted in suppression of neurite formation, and its knockdown showed the acceleration. Thin layer chromatography of the glycolipids from Neu4-transfected cells showed ganglioside compositions to be only slightly affected, although lectin blot analysis revealed increased binding to Ricinus communis agglutinin (RCA) lectin of a ∼95-kDa glycoprotein, which decreased with cell differentiation. These results suggest that mouse Neu4 plays an important regulatory role in neurite formation, possibly through desialylation of glycoproteins.Sialidases catalyze the removal of sialic acid from non-reducing ends of glycoproteins and glycolipids. In mammals, four types of sialidases have so far been cloned, classified according to their subcellular localization and enzymatic properties (abbreviated to Neu1, Neu2, Neu3, and Neu4) (13). Studies have provided strong evidence that these sialidases play crucial roles in various physiological functions such as cell differentiation, cell growth, and malignant transformation. Among these sialidases, Neu4 is unique in its tissue expression pattern and enzymatic properties. In the mouse, it is dominantly expressed in brain, but its sialidase activity is very weak compared with other mouse sialidases (4). In contrast, human NEU4 is expressed not only in brain, but also in liver, kidney, and colon (57). We have demonstrated that NEU4 has two isoforms, differing in the N-terminal 12-amino acid residues that act as a mitochondrial-targeting sequence (7). Except for the subcellular localization, enzymatic properties are very similar. The short form of NEU4 (NEU4S) suppresses malignancy in colon cancer cells, mainly through desialylation of some glycoproteins, whereas the long form of NEU4 (NEU4L) may be involved in apoptosis with hydrolysis of ganglioside GD3 in mitochondria (8). Recently, Neu4 knockout mice (Neu4−/−) were generated for pathological analysis (9). Neu4−/− grew normally with a normal lifespan and proved fertile, but vacuolization of the lung and spleen was observed with a lysosomal storage phenotype, and the GM1/GD1a ratio was decreased in the brain. The observations on Neu4−/− are very interesting, but there is some ambiguity in the available previous reports, because, as mentioned above, mouse Neu4 has been reported to have weak sialidase activity in vitro, and its expression is restricted in brain. To clarify this ambiguity and further understand the physiological functions of Neu4, we examined expression in the mouse brain and observed a possible involvement in neural differentiation in connection with another sialidase, Neu3, which greatly increases during differentiation of neuroblastoma cells (10, 11) and causes acceleration of neurite formation (1013).In the GenBankTM data base, nucleotide sequences of mouse Neu4 have been submitted as AY258421 and AK034236. The former contains a complete coding sequence of 1506 bp, with two ATGs at positions 1 and 70, and AK034236 encodes only the second ATG (4). The gene from AY258421 has been reported to encode Neu4, showing weak sialidase activity, but there is no information on whether the gene based on AK034236 encodes Neu4 with sialidase activity toward natural substrates. We have now extended our studies to the existence of different mouse Neu4 isoforms, focusing on their significance in neuronal cells by measuring expression levels during cell differentiation. We present, here, evidence that two murine Neu4 isoforms contribute to neurite formation.  相似文献   

9.
A tandem gene cluster CHS-CHI-IFS (rIFS) for secondary metabolites of plant isoflavones was constructed by using the chalcone synthase (CHS), chalcone isomerase (CHI), and isoflavone synthase (IFS) (GenBank accession numbers EU526827, EU526829, EU526830) in a single recombination event with the pET22b vector. The resulting expression vector pET-rIFS was heterogeneously expressed. The highlights of the vector include ease of handling, high efficiency and universal application among diverse plant species. To the best of our knowledge, this is the first attempt at developing a novel method of constructing tandem gene cluster for future research involving secondary metabolism of isoflavones and isoflavones engineering.Key words: Isoflavones biosynthesis, Novel method, Secondary metabolism, Tandem gene cluster  相似文献   

10.
The aim of this study was to characterize a Triticum aestivum-Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) disomic addition line 2-1-6-3. Individual line 2-1-6-3 plants were analyzed using cytological, genomic in situ hybridization (GISH), EST-SSR, and EST-STS techniques. The alien addition line 2-1-6-3 was shown to have two P. huashanica chromosomes, with a meiotic configuration of 2n = 44 = 22 II. We tested 55 EST-SSR and 336 EST-STS primer pairs that mapped onto seven different wheat chromosomes using DNA from parents and the P. huashanica addition line. One EST-SSR and nine EST-STS primer pairs indicated that the additional chromosome of P. huashanica belonged to homoeologous group 7, the diagnostic fragments of five EST-STS markers (BE404955, BE591127, BE637663, BF482781 and CD452422) were cloned, sequenced and compared. The results showed that the amplified polymorphic bands of P. huashanica and disomic addition line 2-1-6-3 shared 100% sequence identity, which was designated as the 7Ns disomic addition line. Disomic addition line 2-1-6-3 was evaluated to test the leaf rust resistance of adult stages in the field. We found that one pair of the 7Ns genome chromosomes carried new leaf rust resistance gene(s). Moreover, wheat line 2-1-6-3 had a superior numbers of florets and grains per spike, which were associated with the introgression of the paired P. huashanica chromosomes. These high levels of disease resistance and stable, excellent agronomic traits suggest that this line could be utilized as a novel donor in wheat breeding programs.  相似文献   

11.
12.
The wax (glaucousness) on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). The non-glaucousness (Iw) loci act as inhibitors of the glaucousness loci (W). High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences corresponding to the syntenic regions of the Iw loci in wheat. Eleven Iw1 and eight Iw2 linked EST markers were developed and mapped to linkage maps on the distal regions of chromosomes 2BS and 2DS, respectively. The Iw1 locus mapped within a 0.96 cM interval flanked by the BE498358 and CA499581 EST markers that are collinear with 122 kb, 202 kb, and 466 kb genomic regions in the Brachypodium 5S chromosome, the sorghum 6S chromosome and the rice 4S chromosome, respectively. The Iw2 locus was located in a 4.1 to 5.4-cM interval in chromosome 2DS that is flanked by the CJ886319 and CJ519831 EST markers, and this region is collinear with a 2.3 cM region spanning the Iw1 locus on chromosome 2BS. Both Iw1 and Iw2 co-segregated with the BF474014 and CJ876545 EST markers, indicating they are most likely orthologs on 2BS and 2DS. These high-resolution maps can serve as a framework for chromosome landing, physical mapping and map-based cloning of the wax inhibitors in wheat.  相似文献   

13.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Phylum Spirochaetes

Non-Bacterial genomes

  相似文献   

14.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office.

Non-Bacterial genomes

  相似文献   

15.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Euryarchaeota

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Non-Bacterial genomes

  相似文献   

16.
Streptococcus suis is an emerging zoonotic pathogen causing severe infections in pigs and humans. In previous studies, 33 serotypes of S. suis have been identified using serum agglutination. Here, we describe a novel S. suis strain, CZ130302, isolated from an outbreak of acute piglet meningitis in eastern China. Strong pathogenicity of meningitis caused by strain CZ130302 was reproduced in the BALB/c mouse model. The strain showed a high fatality rate (8/10), higher than those for known virulent serotype 2 strains P1/7 (1/10) and 9801 (2/10). Cell adhesion assay results with bEnd.3 and HEp2 cells showed that CZ130302 was significantly close to P1/7 and 9801. Both the agglutination test and its complementary test showed that strain CZ130302 had no strong cross-reaction with the other 33 S. suis serotypes. The multiplex PCR assays revealed no specified bands for all four sets used to detect the other 33 serotypes. In addition, genetic analysis of the whole cps gene clusters of all serotypes was performed in this study. The results of comparative genomics showed that the cps gene cluster of CZ130302, which was not previously reported, showed no homology to the gene sequences of the other strains. Especially, the wzy, wzx, and acetyltransferase genes of strain CZ130302 are phylogenetically distinct from strains of the other 33 serotypes. Therefore, this study suggested that strain CZ130302 represents a novel variant serotype of S. suis (designated serotype Chz) which has a high potential to be virulent and associated with meningitis in animals.  相似文献   

17.
Multi-drug resistant (MDR) bacteria associated with wounds are extremely escalating. This study aims to survey different wounds in Alexandria hospitals, North Egypt, to explore the prevalence and characteristics of MDR bacteria for future utilization in antibacterial wound dressing designs. Among various bacterial isolates, we determined 22 MDR bacteria could resist different classes of antibiotics. The collected samples exhibited the prevalence of mono-bacterial infections (60%), while 40% included poly-bacterial species due to previous antibiotic administration. Moreover, Gram-negative bacteria showed dominance with a ratio of 63.6%, while Gram-positive bacteria reported 36.4%. Subsequently, the five most virulent bacteria were identified following the molecular approach by 16S rRNA and physiological properties using the VITEK 2 automated system. They were deposited in GenBank as Staphylococcus haemolyticus MST1 (KY550377), Pseudomonas aeruginosa MST2 (KY550378), Klebsiella pneumoniae MST3 (KY550379), Escherichia coli MST4 (KY550380), and Escherichia coli MST5 (KY550381). In terms of isolation source, S. haemolyticus MST1 was isolated from a traumatic wound, while P. aeruginosa MST2 and E. coli MST4 were procured from hernia surgical wounds, and K. pneumoniae MST3 and E. coli MST5 were obtained from diabetic foot ulcers. Antibiotic sensitivity tests exposed that K. pneumoniae MST3, E. coli MST4, and E. coli MST5 are extended-spectrum β-lactamases (ESBLs) bacteria. Moreover, S. haemolyticus MST1 belongs to the methicillin-resistant coagulase-negative staphylococcus (MRCoNS), whereas P. aeruginosa MST2 exhibited resistance to common empirical bactericidal antibiotics. Overall, the study provides new insights into the prevalent MDR bacteria in Egypt for further use as specific models in formulating antibacterial wound dressings.  相似文献   

18.
An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号