首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2022,121(4):515-524
Changes in biomechanical properties have profound impacts on human health. C. elegans might serve as a model for studying the molecular genetics of mammalian tissue decline. Previously, we found that collagens are required for insulin signaling mutants' long lifespan and that overexpression of specific collagens extends wild-type lifespan. However, whether these effects on lifespan are due to mechanical changes during aging has not yet been established. Here, we have developed two novel methods to study the cuticle: we measure mechanical properties of live animals using osmotic shock, and we directly perform the tensile test on isolated cuticles using microfluidic technology. Using these tools, we find that the cuticle, not the muscle, is responsible for changes in the “stretchiness” of C. elegans, and that cuticle stiffness is highly nonlinear and anisotropic. We also found that collagen mutations alter the integrity of the cuticle by significantly changing the elasticity. In addition, aging stiffens the cuticle under mechanical loads beyond the cuticle's healthy stretched state. Measurements of elasticity showed that long-lived daf-2 mutants were considerably better at preventing progressive mechanical changes with age. These tests of C. elegans biophysical properties suggest that the cuticle is responsible for their resilience.  相似文献   

2.
In sexually reproducing animals, mating is essential for transmitting genetic information to the next generation and therefore animals have evolved mechanisms for optimizing the chance of successful mate location. In the soil nematode C. elegans, males approach hermaphrodites via the ascaroside pheromones, recognize hermaphrodites when their tails contact the hermaphrodites'' body, and eventually mate with them. These processes are mediated by sensory signals specialized for sexual communication, but other mechanisms may also be used to optimize mate location. Here we describe associative learning whereby males use sodium chloride as a cue for hermaphrodite location. Both males and hermaphrodites normally avoid sodium chloride after associative conditioning with salt and starvation. However, we found that males become attracted to sodium chloride after conditioning with salt and starvation if hermaphrodites are present during conditioning. For this conditioning, which we call sexual conditioning, hermaphrodites are detected by males through pheromonal signaling and additional cue(s). Sex transformation experiments suggest that neuronal sex of males is essential for sexual conditioning. Altogether, these results suggest that C. elegans males integrate environmental, internal and social signals to determine the optimal strategy for mate location.  相似文献   

3.
4.
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well‐studied androdioecious species consisting mostly of self‐fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two‐step mathematical model of the evolutionary pathway from a male–female species to a selfing‐hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self‐fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self‐fertilizers if the fitness of selfed offspring exceeds one‐half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male–female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand‐off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand‐off may be an increase in the longevity of the androdioecious mating system.  相似文献   

5.
6.
Immunoblotting experiments using antibodies directed against the large collagenous cuticle proteins of Caenorhabditis elegans revealed a class of small collagenous proteins (CP) of apparent molecular weight 38,000-52,000 present during the L4 to adult molt. These CP are smaller than most vertebrate collagens characterized to date and share many characteristics with the small collagenous products translated in vitro from RNA isolated at this molt. C. elegans collagen genes, collagen-coding mRNA, and collagenous in vitro products that have been characterized are also small. Detection of small CP in vivo in C. elegans thus lends further support to the hypothesis that such small collagenous proteins are the primary gene product precursors to the larger collagenous proteins isolated from the C. elegans cuticle.  相似文献   

7.
8.
The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.  相似文献   

9.
10.
Male costs of mating are now thought to be widespread. The two-spot ladybird beetle (Adalia bipunctata) has been the focus of many studies of mating and sexual selection, yet the costs of mating for males are unknown. The mating system of A. bipunctata involves a spermatophore nuptial gift ingested by females after copulation. In this study, we investigate the cost to males of mating and of transferring spermatophores in terms of lifespan, ejaculate production and depletion of nutritional reserves. We found that males faced a strong trade-off between mating and survival, with males that were randomly assigned to mate a single time experiencing a 53% reduction in post-mating lifespan compared to non-mating males. This is among the most severe survival costs of a single mating yet reported. However, spermatophore transfer did not impact male survival. Instead, the costs associated with spermatophores appeared as a reduced ability to transfer spermatophores in successive matings. Furthermore, males ingested more food following spermatophore transfer than after matings without spermatophores, suggesting that spermatophore transfer depletes male nutritional reserves. This is to our knowledge the first report of an effect of variation in copulatory behaviour on male foraging behaviour. Overall, our study highlights the advantages of assessing mating costs using multiple currencies, and suggests that male A. bipunctata should exhibit mate choice.  相似文献   

11.
12.
In the nematode Caenorhabditis elegans, loss of function of many genes leads to increases in lifespan, sometimes of a very large magnitude. Could this reflect the occurrence of programmed death that, like apoptosis of cells, promotes fitness? The notion that programmed death evolves as a mechanism to remove worn out, old individuals in order to increase food availability for kin is not supported by classic evolutionary theory for most species. However, it may apply in organisms with colonies of closely related individuals such as C. elegans in which largely clonal populations subsist on spatially limited food patches. Here, we ask whether food competition between nonreproductive adults and their clonal progeny could favor programmed death by using an in silico model of C. elegans. Colony fitness was estimated as yield of dauer larva propagules from a limited food patch. Simulations showed that not only shorter lifespan but also shorter reproductive span and reduced adult feeding rate can increase colony fitness, potentially by reducing futile food consumption. Early adult death was particularly beneficial when adult food consumption rate was high. These results imply that programmed, adaptive death could promote colony fitness in C. elegans through a consumer sacrifice mechanism. Thus, C. elegans lifespan may be limited not by aging in the usual sense but rather by apoptosis‐like programmed death.  相似文献   

13.
The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-β signaling pathway.  相似文献   

14.
Neurotransmission is the process by which neurons transfer information via chemical signals to their post-synaptic targets, on a rapid time scale. This complex process requires the coordinated activity of many pre- and post-synaptic proteins to ensure appropriate synaptic connectivity, conduction of electrical signals, targeting and priming of secretory vesicles, calcium sensing, vesicle fusion, localization and function of postsynaptic receptors and finally, recycling mechanisms. As neuroscientists it is our goal to elucidate which proteins function in each of these steps and understand their mechanisms of action. Electrophysiological recordings from synapses provide a quantifiable read out of the underlying electrical events that occur during synaptic transmission. By combining this technique with the powerful array of molecular and genetic tools available to manipulate synaptic proteins in C. elegans, we can analyze the resulting functional changes in synaptic transmission. The C. elegans NMJs formed between motor neurons and body wall muscles control locomotion, therefore, mutants with uncoordinated locomotory phenotypes (known as unc s) often perturb synaptic transmission at these synapses 1. Since unc mutants are maintained on a rich supply of a bacterial food source, they remain viable as long as they retain some pharyngeal pumping ability to ingest food. This, together with the fact that C. elegans exist as hermaphrodites, allows them to pass on mutant progeny without the need for elaborate mating behaviors. These attributes, coupled with our recent ability to record from the worms NMJs 2,3,7 make this an excellent model organism in which to address precisely how unc mutants impact neurotransmission. The dissection method involves immobilizing adult worms using a cyanoacrylic glue in order to make an incision in the worm cuticle exposing the NMJs. Since C. elegans adults are only 1 mm in length the dissection is performed with the use of a dissecting microscope and requires excellent hand-eye coordination. NMJ recordings are made by whole-cell voltage clamping individual body wall muscle cells and neurotransmitter release can be evoked using a variety of stimulation protocols including electrical stimulation, light-activated channel-rhodopsin-mediated depolarization 4 and hyperosmotic saline, all of which will be briefly described.Open in a separate windowClick here to view.(91M, flv)  相似文献   

15.

Background  

Sexual conflicts between mating partners can strongly impact the evolutionary trajectories of species. This impact is determined by the balance between the costs and benefits of mating. However, due to sex-specific costs it is unclear how costs compare between males and females. Simultaneous hermaphrodites offer a unique opportunity to determine such costs, since both genders are expressed concurrently. By limiting copulation of focal individuals in pairs of pond snails (Lymnaea stagnalis) to either the male role or the female role, we were able to compare the fecundity of single sex individuals with paired hermaphrodites and non-copulants. Additionally, we examined the investment in sperm and seminal fluid of donors towards feminized snails and hermaphrodites.  相似文献   

16.
The association of the model organism Caenorhabditis elegans and the fungus Pleurotus ostreatus gives the possibility to study the molecular and genetic mechanisms of the early stages of the spatial and temporal interactions of animals with fungal pathogens. We identified the stages of the infection process of P. ostreatus on the nematode C. elegans. We found that prior to penetration inside a worm a fungal toxin paralyzed and immobilized, but did not kill C. elegans. This finding opens the possibility for the further study of the effect of paralyzing toxins on host organisms. The membrane permeability of paralyzed worms increased dramatically and leakage products initiated the growth of directional hyphae towards the nematodes. The hyphae penetrated into live C. elegans animals either through natural openings or directly by piercing the cuticle. Upon contact with the nematode cuticle, P. ostreatus attached to it, formed appressoria-like structures and infection pegs, piercing the cuticle and penetrating inside the nematode body. The small zones around the penetration loci are of special interest for the evaluation of initial contacts between two organisms and for the study of the C. elegans local defense response against fungal infection.  相似文献   

17.
Androdioecy (populations comprised of mixtures of males and hermaphrodites) is a rare mating system, found only in a few plants and animals. The rarity of this system stems from the limited benefits to males in an otherwise all-hermaphroditic population. One of the potential benefits to males is typified by the nematode Caenorhabditis elegans, in which hermaphrodites do not produce sufficient sperm to fertilize all of their eggs. Here we explore the possibility that males are needed for complete fertilization of hermaphrodites' eggs in a second androdioecious animal, the clam shrimp Eulimnadia texana. We compare the fertilization rate of outcrossed to selfed eggs to test whether the latter exhibit lower fertilization due to sperm limitation (as in C. elegans). Because this comparison confounds differences in egg fertilization due to sperm limitation with the potential for early inbreeding depression, we also used a third mating treatment, a brother/sister cross, to allow separation of sperm limitation from inbreeding depression. In both populations examined, the proportion of eggs that were fertilized decreased linearly with increasing relatedness: comparing eggs produced by outcrossing, brother/sister, and selfed matings, respectively. This pattern suggests that differences in fertilization among these three treatments were caused solely by inbreeding depression, and therefore that hermaphrodites are not sperm limited. These results are combined with previous data on this species to test whether the maintenance of males can be explained using a population genetics model specifically designed for this species.  相似文献   

18.
Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans). In L6 myotubes, CA was a potent reactive oxygen species (ROS) scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK) pathway and displayed various features associated with AMPK activation: CA (a) enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx) and superoxide dismutase (SOD) activities, (b) favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c) increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d) inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin) were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5–100 μM). These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.  相似文献   

19.
Rearing environment can have an impact on adult behavior, but it is less clear how rearing environment influences adult behavior plasticity. Here we explore the effect of rearing temperature on adult mating behavior plasticity in the butterfly Bicyclus anynana, a species that has evolved two seasonal forms in response to seasonal changes in temperature. These seasonal forms differ in both morphology and behavior. Females are the choosy sex in cohorts reared at warm temperatures (WS butterflies), and males are the choosy sex in cohorts reared at cooler temperatures (DS butterflies). Rearing temperature also influences mating benefits and costs. In DS butterflies, mated females live longer than virgin females, and mated males live shorter than virgin males. No such benefits or costs to mating are present in WS butterflies. Given that choosiness and mating costs are rearing temperature dependent in B. anynana, we hypothesized that temperature may also impact male and female incentives to remate in the event that benefits and costs of second matings are similar to those of first matings. We first examined whether lifespan was affected by number of matings. We found that two matings did not significantly increase lifespan for either WS or DS butterflies relative to single matings. However, both sexes of WS but not DS butterflies experienced decreased longevity when mated to a non-virgin relative to a virgin. We next observed pairs of WS and DS butterflies and documented changes in mating behavior in response to changes in the mating status of their partner. WS but not DS butterflies changed their mating behavior in response to the mating status of their partner. These results suggest that rearing temperature influences adult mating behavior plasticity in B. anynana. This developmentally controlled behavioral plasticity may be adaptive, as lifespan depends on the partner’s mating status in one seasonal form, but not in the other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号