Several studies have substantiated the correlation between reactive oxygen species (ROS) and Sirtuin 1 (SIRT1). Normally, enterovirus 71 (EV71) is associated with severe clinical manifestations and death. However, the effect of EV71 on the induction of cellular death and the interplay between ROS/SIRT1 in cell death has not been confirmed yet. In the current study, an increase in the number of apoptotic cells was observed as soon as the EV71 infection was initiated in cells and mice. Furthermore, EV71 infection also promoted a rise in the levels of three commonly known proinflammatory cytokines, interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α. During EV71-induced apoptosis in the different cell lines, ROS generation and SIRT1 downregulation were observed. Further investigations showed that the administration of ROS inhibitor, N-acetyl- l -cysteine (NAC), reduced the level of apoptosis and inflammation, reduced EV71 propagation, and increased SIRT1 expression in EV71-infected cells. In addition, combined administration of NAC and EX527 (SIRT1 inhibitor) restored apoptosis in the EV71-infected cells, which was reduced due to NAC. This data demonstrated that ROS generation is positively associated with EV71-induced apoptosis and inflammation, while this effect could be reversed by SIRT1 inhibition. Collectively, we have shown that EV71 induces apoptosis and inflammation by promoting ROS generation and reducing SIRT1 expression. 相似文献
Enterovirus 71 (EV71) is a common cause of Hand, foot, and mouth disease (HFMD) and may also cause severe neurological diseases, such as encephalitis and poliomyelitis-like paralysis. To examine the genetic diversity of EV71, we determined and analyzed the complete VP1 sequences (891 nucleotides) from nine EV71 strains isolated in Fuyang, China. We found that nine EV71 strains isolated were over 98% homologous at the nucleotide level and 93%-100% homologous to members of the C4 subgenogroup. At the amino acid level, these Fuyang strains were 99% -100% homologous to one another, 97%-100% homologous to members of the C4 subgenogroup, and the histidine(H) at amino acid position 22 was conserved among the Fuyang strains. The results indicate that Fuyang isolates belong to genotype C4, and an H at position 22 appears to be a marker for the Fuyang strains. 相似文献
Enterovirus 71 (EV71) is one of the major pathogens that cause hand, foot, and mouth disease outbreaks in young children in the Asia-Pacific region in recent years. Human scavenger receptor class B 2 (SCARB2) is the main cellular receptor for EV71 on target cells. The requirements of the EV71-SCARB2 interaction have not been fully characterized, and it has not been determined whether SCARB2 serves as an uncoating receptor for EV71. Here we compared the efficiency of the receptor from different species including human, horseshoe bat, mouse, and hamster and demonstrated that the residues between 144 and 151 are critical for SCARB2 binding to viral capsid protein VP1 of EV71 and seven residues from the human receptor could convert murine SCARB2, an otherwise inefficient receptor, to an efficient receptor for EV71 viral infection. We also identified that EV71 binds to SCARB2 via a canyon of VP1 around residue Gln-172. Soluble SCARB2 could convert the EV71 virions from 160 S to 135 S particles, indicating that SCARB2 is an uncoating receptor of the virus. The uncoating efficiency of SCARB2 significantly increased in an acidic environment (pH 5.6). These studies elucidated the viral capsid and receptor determinants of enterovirus 71 infection and revealed a possible target for antiviral interventions. 相似文献
Enterovirus 71 (EV71), a single‐stranded RNA virus, is one of the most serious neurotropic pathogens in the Asia‐Pacific region. Through interactions with host proteins, the 5′ untranslated region (5′UTR) of EV71 is important for viral replication. To gain a protein profile that interact with the EV71 5′UTR in neuronal cells, we performed a biotinylated RNA‐protein pull‐down assay in conjunction with LC–MS/MS analysis. A total of 109 proteins were detected and subjected to Database for Annotation, Visualization and Integrated Discovery (DAVID) analyses. These proteins were found to be highly correlated with biological processes including RNA processing/splicing, epidermal cell differentiation, and protein folding. A protein–protein interaction network was constructed using the STRING online database to illustrate the interactions of those proteins that are mainly involved in RNA processing/splicing or protein folding. Moreover, we confirmed that the far‐upstream element binding protein 3 (FBP3) was able to bind to the EV71 5′UTR. The redistribution of FBP3 in subcellular compartments was observed after EV71 infection, and the decreased expression of FBP3 in host neuronal cells markedly inhibited viral replication. Our results reveal various host proteins that potentially interact with the EV71 5′UTR in neuronal cells, and we found that FBP3 could serve as a positive regulator in host cells. 相似文献
Virologica Sinica - Similar to that of other enteroviruses, the replication of enterovirus 71 (EV71) occurs on rearranged membranous structures called replication organelles (ROs).... 相似文献
Enterovirus 71 (EV71) is an emerging life‐threatening pathogen particularly in the Asia‐Pacific region. Apoptosis is a major pathogenic feature in EV71 infection. However, which molecular mechanism participating in EV71‐induced apoptosis is not completely understood. Long noncoding RNAs (lncRNAs), a newly discovered class of regulatory RNA molecules, govern a wide range of biological functions through multiple regulatory mechanisms. Whether lncRNAs involved in EV71‐induced apoptosis was investigated in this study. We conducted an apoptosis‐oriented approach by integrating lncRNA and mRNA profilings. lnc‐IRAK3‐3 is down‐regulated in EV71 infection and plays an important role in EV71 infection‐induced apoptosis. Compensation of lnc‐IRAK3‐3 in EV71 infection promoted cell apoptosis wherein GADD45β expression was increased and further triggered caspase3 and PARP cleavage. Using bioinformatics analysis and functional assays, lnc‐IRAK3‐3 could functionally sequester miR‐891b and GADD45β 3′UTR whereas miR‐891b showed the inhibitory activity on GADD45β expression. Taken together, lnc‐IRAK3‐3 has the ability capturing miR‐891b to enforce GADD45β expression and eventually promotes apoptosis. On the contrary, host cells suppress lnc‐IRAK3‐3 to relieve lnc‐IRAK3‐3‐sequestered miR‐891b, restrain GADD45β, and attenuate apoptosis in EV71 infection that prevent host cells from severe damages. We discover a new molecular mechanism by which host cells counteract EV71‐induced apoptosis through the lnc‐IRAK3‐3/miR‐891b/GADD45β axis partially. 相似文献
As a candidate for active vitamin D analogs that have selective effects on bone, 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3 (ED-71) has been synthesized and is currently under clinical trials. In ovariectomized rat model for osteoporosis, ED-71 caused an increase bone mass at the lumbar vertebra to a greater extent than 1alpha-hydroxyvitamin D3 (alfacalcidol), while enhancing calcium absorption and decreasing serum parathyroid hormone levels to the same degree as alfacalcidol. ED-71 lowered the biochemical and histological parameters of bone resorption more potently than alfacalcidol, while maintaining bone formation markers.An early phase II clinical trial was conducted with 109 primary osteoporotic patients. The results indicate that oral daily administration of ED-71 (0.25, 0.5, 0.75, and 1.0 microgram) for 6 months increased lumbar bone mineral density in a dose-dependent manner without causing hypercalcemia and hypercalciuria. ED-71 also exhibited a dose-dependent suppression of urinary deoxypyridinoline with no significant reduction in serum osteocalcin. These results demonstrate that ED-71 has preferential effects on bone with diminished effects on intestinal calcium absorption. ED-71 offers potentially a new modality of therapy for osteoporosis with selective effects on bone. 相似文献
Purpose: Hypercatecholaminemia-related heart failure has been proposed as the main cause of enterovirus A71-related (EV-A71) early mortality. The purpose of this study was to measure urine catecholamine concentrations in severe EV-A71-infected children.
Methods: A total of 35 children, aged 2.5?±?2.1 years, were divided into three groups. Group I: 15 septic shock patients, group II: 17?EV-A71-stage-2 patients, and group III: 3?EV-A71-stage-4 patients. The laboratory results, cardiac biomarkers and urine catecholamine concentrations were statistically analysed.
Results: Group I had the highest C-reactive protein (CRP) levels and group II had the lowest B-type natriuretic peptide (BNP) and its N-terminal prohormone among the groups (p?=?0.039, <0.01 and <0.01, respectively). Group III patients had significantly higher urine catecholamine and troponin-I values among the groups. If urine epinephrine (Epi) >134 ug/gCr, norepinephrine (NE) >176 ug/gCr and vanillylmandelic acid (VMA) >11.7?mg/gCr were used as the cutoff points to differentiate groups II and III, the sensitivities and specificity were all 100%.
Conclusions: The significantly elevated urine catecholamine concentrations in EV-A71-stage-4 patients support the hypothesis that hypercatecholaminemia-related heart failure is involved in severe EV-A71 infection. Urine catecholamines could be used as reliable biomarkers for differentiation of severe EV-A71 infection with or without heart failure and septic shock. 相似文献
Enterovirus A71(EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-a(IFN-a) has been used in antiviral therapy for decades; it has been reported that EV-A71 antagonizes the antiviral activity of IFN-a based on viral 2 Apro-mediated reduction of the interferon-alpha receptor 1(IFNAR1); however, the mechanism remains unknown. Here, we showed a significant increase in IFNAR1 protein induced by IFN-a in RD cells, whereas EV-A71 infection caused obvious downregulation of the IFNAR1 protein and blockage of IFN-a signaling. Subsequently, we observed that EV-A71 2 Apro inhibited IFNAR1 translation by cleavage of the eukaryotic initiation factor 4 GI(eIF4GI), without affecting IFNAR1 m RNA levels induced by IFN-a. The inhibition of IFNAR1 translation also occurred in puromycin-induced apoptotic cells when caspase-3 cleaved e IF4 GI. Importantly, we verified that 2 Aprocould activate cellular caspase-3, which was subsequently involved in e IF4 GI cleavage mediated by 2 Apro. Furthermore, inhibition of caspase-3 activation resulted in the partial restoration of IFNAR1 in cells transfected with 2 A or infected with EV-A71, suggesting the pivotal role of both viral 2 Aproand caspase-3 activation in the disturbance of IFN-a signaling. Collectively, we elucidate a novel mechanism by which cellular caspase-3 contributes to viral 2 Apro-mediated down-regulation of IFNAR1 at the translation level during EV-A71 infection, indicating that caspase-3 inhibition could be a potential complementary strategy to improve clinical anti-EV-A71 therapy with IFN-a. 相似文献