首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Molecular and functional organization of yeast plasmid pSR1   总被引:9,自引:0,他引:9  
The nucleotide sequence of a 6251 base-pair plasmid, pSR1, harbored in an osmophilic haploid yeast, Zygosaccharomyces rouxii (formerly Saccharomyces rouxii), was determined. No homology was detected between the sequences of pSR1 and 2-micron DNA of Saccharomyces cerevisiae. pSR1 has a pair of inverted repeats consisting of completely homologous 959 base-pair sequences, which separate two unique sequences 2654 base-pairs and 1679 base-pairs long. Each inverted repeat has an ARS sequence functional in both Z. rouxii and S. cerevisiae hosts. Short direct repeats or dyad symmetries were observed in the inverted repeats similar to those found close to the replication origin of 2-micron DNA. Three open reading frames, P, S and R, each able to encode a protein of molecular weight larger than 10,000, were found. Insertional inactivation of R gave rise to a defect in the intramolecular recombination at the inverted repeats, and that of S reduced the copy number of pSR1 in the S. cerevisiae host. The maintenance stability of the plasmid was also tested in the heterogeneous S. cerevisiae host, but the results of the insertional inactivation of P, S and R were ambiguous. pSR1 and 2-micron DNA were compatible in S. cerevisiae cells, but the protein factors encoded by these plasmids did not complement each other.  相似文献   

2.
3.
A number of restriction fragments that function as autonomously replicating sequences (ARSs) in yeast have been isolated from Drosophila melanogaster DNA. The behaviour in yeast of plasmids containing Drosophila ARS elements was studied and compared to that exhibited by the archetypal yeast ARS-1 plasmid. ARS functions were localised by subcloning and BAL-31 deletion analysis. These studies demonstrated the structural and functional complexity of Drosophila ARSs. Each Drosophila ARS element has at least two domains, one essential for replication (the replication sequence, RS) and a second (the replication enhancer, RE) which is essential for maximum function of the RS. The RS of three Drosophila ARSs was shown to contain a sequence identical to an 11 bp yeast ARS consensus sequence (5' A/T TTTATPuTTT A/T 3'). These observations lend support to the hypothesis that heterologous ARS elements may be of biological significance.  相似文献   

4.
A Kluyveromyces lactis chromosomal sequence of 913 bp is sufficient for replication in Saccharomyces cerevisiae and K. lactis . This fragment contains a 12 bp sequence 5'-ATTTATTGTTTT-3' that is related to the S. cerevisiae ACS (ARS consensus sequence). This dodecamer was removed by site-directed mutagenesis and the effect on K. lactis and S. cerevisiae ARS (autonomous replicating sequence) activity was determined. The dodecamer is essential for S. cerevisiae ARS function but only contributes to K. lactis ARS activity; therefore, its role in K. lactis is unlikely to be the same as that of the essential S. cerevisiae ACS.
A 103 bp subclone was found to retain ARS activity in both yeasts, but the plasmid was very unstable in S. cerevisiae . Deletion and linker substitution mutagenesis of this fragment was undertaken to define the DNA sequence required for K. lactis ARS function and to test whether the sequence required for ARS activity in K. lactis and S. cerevisiae coincide. We found a 39 bp core region essential for K. lactis ARS function flanked by sequences that contribute to ARS efficiency. The instability of the plasmid in S. cerevisiae made a fine-structure analysis of the S. cerevisiae ARS element impossible. However, the sequences that promote high-frequency transformation in S. cerevisiae overlap the essential core of the K. lactis ARS element but have different end-points.  相似文献   

5.
Replicators that control the initiation of DNA replication in the chromosomes of Saccharomyces cerevisiae retain their function when cloned into plasmids, where they are commonly referred to as autonomously replicating sequences (ARSs). Previous studies of the structure of ARS1 in both plasmid and chromosome contexts have shown that it contains one essential DNA element, A, that includes a match to the ARS consensus sequence (ACS), and three additional elements, B1, B2, and B3, that are also important for ARS function. Elements A and B3 are bound by a candidate initiator protein called the origin recognition complex and ARS-binding factor 1, respectively. Although the A and B3 elements have been found in other ARSs, sequence comparisons among ARSs have failed to identify B1- and B2-like elements. To assess the generality of the modular nature of yeast replicators, linker substitution mutagenesis of another yeast chromosomal replicator, ARS307, was performed. Three DNA sequence elements were identified in ARS307, and they were demonstrated to be functionally equivalent to the A, B1, and B2 elements present in ARS1. Despite the lack of DNA sequence similarity, the B1 and B2 elements at each ARS were functionally conserved. Single-base substitutions in the core of the ARS1 B1 and B2 elements identified critical nucleotides required for the function of the B1 element. In contrast, no single-point mutations were found to affect B2 function. The results suggest that multiple DNA sequence elements might be a general and conserved feature of replicator sequences in S. cerevisiae.  相似文献   

6.
This paper reports the genomic analysis of strain CBS732 of Zygosaccharomyces rouxii, a homothallic diploid yeast. We explored the sequences of 4934 random sequencing tags of about 1 kb in size and compared them to the Saccharomyces cerevisiae gene products. Approximately 2250 nuclear genes, 57 tRNAs, the rDNA locus, the endogenous pSR1 plasmid and 15 mitochondrial genes were identified. According to 18S and 25S rRNA cladograms and to synteny analysis, Z. rouxii could be placed among the S. cerevisiae sensu lato yeasts.  相似文献   

7.
A circular DNA plasmid, pSR1, isolated from Zygosaccharomyces rouxii has a pair of inverted repeats consisting of completely homologous 959-base pair (bp) sequences. Intramolecular recombination occurs frequently at the inverted repeats in cells of Saccharomyces cerevisiae, as well as in Z. rouxii, and is catalyzed by a protein encoded by the R gene of its own genome. The recombination is, however, independent of the RAD52 gene of the host genome. A site for initiation of the intramolecular recombination in the S. cerevisiae host was delimited into, at most, a 58-bp region in the inverted repeats by using mutant plasmids created by linker insertion. The 58-bp region contains a pair with 14-bp dyad symmetry separated by a 3-bp spacer sequence. The recombination initiated at this site was accompanied by a high frequency of gene conversion (3 to 50% of the plasmid clones examined). Heterogeneity created by the linker insertion or by a deletion (at most 153 bp so far tested) at any place on the inverted repeats was converted to a homologous combination by the gene conversion, even in the rad52-1 mutant host. A mechanism implying branch migration coupled with DNA replication is discussed.  相似文献   

8.
DNA fragments that function as autonomously replicating sequences (ARSs) have been isolated from Ustilago maydis. When inserted into an integrative transforming vector, the fragments increased the frequency of U. maydis transformation several-thousandfold. ARS-containing plasmids were transmitted in U. maydis as extrachromosomal elements through replication. They were maintained at a level of about 25 copies per cell but were mitotically unstable. One ARS characterized in detail, which we called UARS1, was localized to a 1.7-kilobase fragment. UARS1 contained a cluster of active sequences. This element could be reduced further into three separate subfragments, each of which retained ARS activity. The smallest one was 383 base pairs (bp) long. Although not active itself in yeast, this small fragment contained seven 8-bp direct repeats, two contiguous 30-bp direct repeats, and five 11-bp units in both orientations with sequences similar but not identical to the consensus sequence found to be crucial for ARS activity in Saccharomyces cerevisiae.  相似文献   

9.
DNAs that contain specific yeast chromosomal sequences called ARSs transform Saccharomyces cerevisiae at high frequency and can replicate extrachromosomally as plasmids when introduced into S. cerevisiae by transformation. To determine the boundaries of the minimal sequences required for autonomous replication in S. cerevisiae, we have carried out in vitro mutagenesis of the first chromosomal ARS described, ARS1. Rather than identifying a distinct and continuous segment that mediates the ARS+ phenotype, we find three different functional domains within ARS1. We define domain A as the 11-base-pair (bp) sequence that is also found at most other ARS regions. It is necessary but not sufficient for high-frequency transformation. Domain B, which cannot mediate high-frequency transformation, or replicate by itself, is required for efficient, stable replication of plasmids containing domain A. Domain B, as we define it, is continuous with domain A in ARS1, but insertions of 4 bp between the two do not affect replication. The extent of domain B has an upper limit of 109 bp and a lower limit of 46 bp in size. There is no obvious sequence homology between domain B of ARS1 and any other ARS sequence. Finally, domain C is defined on the basis of our deletions as at least 200 bp flanking domain A on the opposite side from domain B and is also required for the stability of domain A in S. cerevisiae. The effect of deletions of domain C can be observed only in the absence of domain B, at least by the assays used in the current study, and the significance of this finding is discussed.  相似文献   

10.
A Toh-e  S Tada    Y Oshima 《Journal of bacteriology》1982,151(3):1380-1390
DNA plasmids were detected in two independent strains of Saccharomyces rouxii among 100 yeast strains other than Saccharomyces cerevisiae tested. The plasmids, pSR1 and pSR2, had almost the same mass (approximately 4 X 10(6) daltons) as 2-micrometers DNA of S. cerevisiae. pSR1 and pSR2 gave identical restriction maps with restriction endonucleases BamHI, EcoRI, HincII, HindIII, and XhoI, and both lacked restriction sites for PstI, SalI, and SmaI. These maps, however, differed significantly from that of S. cerevisiae 2-micrometers DNA. Restriction analysis also revealed two isomeric forms of each plasmid and suggested the presence of a pair of inverted repeat sequences in the molecules where intramolecular recombination took place. DNA-DNA hybridization between the pSR1 and pSR2 DNAs indicated significant homology between their base sequences, whereas no homology was detected between pSR1 and pJDB219, a chimeric plasmid constructed from a whole molecule of 2-micrometers DNA, plasmid pMB9, and a 1.2-kilobase DNA fragment of S. cerevisiae bearing the LEU2 gene. A chimeric plasmid constructed with pSR1 and YIp1, the larger EcoRI-SalI fragment of pBR322 ligated with a 6.1-kilobase DNA fragment of S. cerevisiae bearing the HIS3 gene, could replicate autonomously in an S. cerevisiae host and produced isomers, presumably by intramolecular recombination at the inverted repeats.  相似文献   

11.
We have determined that ARS121 is an efficient origin of replication on chromosome X of Saccharomyces cerevisiae. This origin is comprised of at least three distinct functional domains. One of these domains is the ARS121 core sequence (approximately 35 bp-long), which is essential for origin activity. This essential core contains an 11 bp sequence resembling (2 bp mismatch) the ARS consensus. Another important domain is an enhancer of DNA replication, which binds the OBF1 protein. The third domain, ATR (A/T-rich, approximately 72 bp), is auxiliary and works in either orientation, but only when located 3' to the essential core. When fused to the ARS121 core both the enhancer and the ATR domain act synergistically to enhance the activity of the origin. Furthermore, when fused to the essential core sequences of heterologous ARSs, ARS1 and ARS307, the auxiliary domains also appeared to stimulate synergistically origin function. These results suggest that (i) in order to elicit maximal origin activity all three domains have to interact and (ii) activation of the essential core sequences at different origins of replication may share a common mechanism.  相似文献   

12.
DNA fragments capable of conferring autonomous replicating ability to plasmids inSaccharomyces cerevisiae were isolated from four different plant genomes and from the Ti plasmid ofAgrobacterium tumefaciens. The DNA structure of these autonomously replicating sequences (ARSs) as well as two from yeast were studied using retardation during polyacrylamide gel electrophoresis and computer analysis as measures of sequence-dependent DNA structures. Bent DNA was found to be associated with the ARS elements. An 11 bp ARS consensus sequence required for ARS function was also identified in the elements examined and was flanked by unusually straight structures which were rich in A+T content. These results show that the ARS elements from genomes of higher plants have structural and sequence features in common with ARS elements from yeast and higher animals.Supported by Grant 1RO1-GM41708-O1 from the National Institute of Health.  相似文献   

13.
T G Palzkill  C S Newlon 《Cell》1988,53(3):441-450
Autonomously replicating sequences (ARSs) of the yeast S. cerevisiae function as replication origins on plasmids and probably also on chromosomes. ARS function requires a copy of the ARS core consensus (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') and additional sequences 3' to the T-rich strand of the consensus. Our analysis of an ARS from chromosome III, the C2G1 ARS, suggests that ARS function depends on the presence of an exact match to the core consensus and the presence of additional near matches in the 3' flanking region. We have demonstrated that ARS function can be mediated by multiple matches to the core consensus by constructing synthetic ARS elements from oligonucleotides containing copies of the consensus sequence. We find that two copies of the core consensus are sufficient for ARS activity and that an artificial ARS as efficient as a natural chromosomal ARS can be constructed from multiple core consensus elements in a specific orientation.  相似文献   

14.
To investigate how a defective replicon might acquire replication competence, we have studied the reversion of autonomously replicating sequence (ARS) mutations. By mutagenesis of a Saccharomyces cerevisiae plasmid lacking a functional origin of replication, we have obtained a series of cis-acting mutations which confer ARS activity on the plasmid. The original plasmid contained an ARS element inactivated by point mutation, but surprisingly only 1 of the 10 independent Ars+ revertants obtained shows a back mutation in this element. In the remainder of the revertants, sequence changes in the M13 vector DNA generate new ARSs. In two cases, a single nucleotide change results in an improved match to the ARS consensus, while six other cases show small duplications of vector sequence creating additional matches to the ARS consensus. These results suggest that changes in replication origin distribution may arise de novo by point mutation rather than by transposition of preexisting origin sequences.  相似文献   

15.
Summary Previous studies have indicated that DNA bending is a general structural feature of sequences (ARSs) from cellular DNAs of yeasts and nuclear and mitochondrial genomic DNAs of other eukaryotes that are capable of autonomous replication in Saccharomyces cerevisiae. Here we showed that bending activity is also tightly associated with S. cerevisiae ARS function of segments cloned from mitochondrial linear DNA plasmids of the basidiomycetes Pleurotus ostreatus and Lentinus edodes. Two plasmids, designated pLPO2-like (9.4 kb), and pLPO3 (6.6 kb) were isolated from a strain of P. ostreatus. A 1029 by fragment with high-level ARS activity was cloned from pLPO3 and it contained one ARS consensus sequence (A/T)TTTAT(A/G)TTT(A/T) indispensable for activity and seven dispersed ARS consensus-like (10/11 match) sequences. A discrete bent DNA region was found to lie around 500 by upstream from the ARS consensus sequence (T-rich strand). Removal of the bent DNA region impaired ARS function. DNA bending was also implicated in the ARS function associated with a 1430 by fragment containing three consecutive ARS consensus sequences which had been cloned from the L. edodes plasmid pLLE1 (11.0 kb): the three consecutive ARSs responsible for high-level ARS function occurred in, and immediately adjacent to, a bent DNA region. A clear difference exists between the two plasmid-derived ARS fragments with respect to the distance between the bent DNA region and the ARS consensus sequence(s).  相似文献   

16.
A linear DNA plasmid, designated pLLE1, has been isolated from a mitochondrial fraction of a strain of Lentinus edodes. pLLE1(11.0 kbp) was sensitive to the 3'----5'-acting exonuclease III and resistant to the 5'----3'-acting lambda exonuclease. It showed no homology with mitochondrial and nuclear genomic DNAs of plasmidless strain as well as the pLLE1-harboring host strain of L. edodes. The 1434-bp fragment (sequences) capable of autonomous replication in the yeast Saccharomyces cerevisiae (ARSs) was cloned from pLLE1 DNA with YIp32 (pBR322 containing yeast LEU2 DNA), which displayed a high ARS activity. The cloned 1434-bp fragment was shown to lie near to the end of pLLE1 DNA (nucleotides about 800-2200) and contained three consecutive ARS consensus sequences (A/T)TTTAT(A/G)TTT(A/T) of S. cerevisiae and dispersive eight ARS consensus-like sequences. The subcloned 366-bp fragment containing the three ARSs retained original ARS activity of the 1434-bp fragment.  相似文献   

17.
Two adjacent but non-overlapping restriction fragments that encompass the replication origin of the macronuclear copy of rDNA from Tetrahymena thermophila allow autonomous replication of plasmids in the yeast Saccharomyces cerevisiae; i.e. they function as autonomously replicating segments (ARS). Deletions generated in vitro into these fragments yield an 82 bp segment from each as the smallest sequence specifying ARS function. These 82 bp segments are at the 5' end of a 220 bp region of homology between the two original ARS restriction fragments. A 39 bp region of almost complete sequence identity between the two 82 bp fragments is suggested to be a core sequence element necessary for ARS function. This 39 bp sequence contains a region identical or nearly identical to the 11 bp yeast ARS consensus sequence (T/ATTTATPuTTTA/T) which is suggested to be essential for ARS function. Detailed comparisons of the 82 bp segments and of the 39 bp core with other ARS sequences reveal no extensive homologies aside from the consensus.  相似文献   

18.
Fragments of chromosomal DNA from a variety of eucaryotes can act as ARSs (autonomously replicating sequence) in yeasts. ARSs enable plasmids to be maintained in extrachromosomal form, presumably because they function as initiation sites for DNA replication. We isolated eight different sequences from mouse chromosomal DNA which function as ARSs in Saccharomyces cerevisiae (bakers' yeast). Although the replication efficiency of the different mouse ARSs in yeasts appears to vary widely, about one-half of them functions as well as the yeast chromosomal sequence ARS1. Moreover, five of the ARSs also promote self replication of plasmids in Schizosaccharomyces pombe (fission yeast). Each of the ARSs was cloned into plasmids suitable for transformation of mouse tissue culture cells. Plasmids were introduced into thymidine kinase (TK)-deficient mouse L cells by the calcium phosphate precipitation technique in the absence of carrier DNA. In some experiments, the ARS plasmid contained the herpes simplex virus type 1 TK gene; in other experiments (cotransformations), the TK gene was carried on a separate plasmid used in the same transformation. In contrast to their behavior in yeasts, none of the ARS plasmids displayed a significant increase in transformation frequency in mouse cells compared with control plasmids. Moreover, only 1 of over 100 cell lines contained the original plasmid in extrachromosomal form. The majority of cell lines produced by transformation with an ARS TK plasmid contained multiple copies of plasmid integrated into chromosomal DNA. In most cases, results with plasmids used in cotransformations were similar to those for plasmids carrying TK. However, cell lines produced by cotransformations with plasmids containing any one of three of the ARSs (m24, m25, or m26) often contained extrachromosomal DNAs.  相似文献   

19.
Four fragments of Saccharomyces cerevisiae chromosome III DNA which carry ARS elements have been sequenced. Each fragment contains multiple copies of sequences that have at least 10 out of 11 bases of homology to a previously reported 11 bp core consensus sequence. A survey of these new ARS sequences and previously reported sequences revealed the presence of an additional 11 bp conserved element located on the 3' side of the T-rich strand of the core consensus. Subcloning analysis as well as deletion and transposon insertion mutagenesis of ARS fragments support a role for 3' conserved sequence in promoting ARS activity.  相似文献   

20.
In a search for sequences that confer on bacterial plasmids the capacity of autonomous replication in yeast cells, we chemically synthesized polynucleotides 80 bp in length from an equimolar mixture of A and T. The random AT-polymer population, W80, was inserted into the plasmid YIp5-Kan1 (which carries the markers URA3 and G418(R), but does not replicate in yeast) and amplified in Escherichia coli. This library, representing 10 000 different AT sequences, was transformed into three species of yeast: Saccharomyces cerevisiae, Kluyveromyces lactis and Torulaspora delbrueckii. The aim was to evaluate the frequency, if any, of autonomously replicating sequences (ARSs) in the random sequences. A large number of transformants were obtained from each species. Many of them showed a stable transformed phenotype. Several W80 sequences were found many times for a given species, suggesting that each species preferred particular sequences for ARS function, although they are diverse in their primary sequence. In view of the high frequency and stability of the replicative plasmids found in the different hosts, this small random AT library may be conveniently used as a source of replicative gene vectors for genetic manipulation of many nonconventional yeast species, in place of searching for species-specific chromosomal ARSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号