首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enzyme responsible for all of the isomaltase activity and much of the maltase activity in the small intestine of the Californian sea lion (Zalophus californianus) was isolated by detergent solubilization of the brush-border membrane, followed by immunoadsorption chromatography using antibodies directed against rabbit sucrase-isomaltase. In 0.1% Triton X-100, sea lion isomaltase occurs as a monomer of Mr = 245,000 and is composed of a single polypeptide chain. As judged from the stoichiometry of the covalent binding of the affinity label, conduritol-B-epoxide, this polypeptide chain carries two enzymatically active sites; they are apparently identical and do not show either positive or negative cooperativity. In addition to cross-reacting immunologically with rabbit sucrase-isomaltase, sea lion isomaltase has similar overall enzymatic properties, with the exception of not hydrolyzing sucrose. The Alaskan fur seal (Collarhinus ursinus) has a two-active site isomaltase; however, in contrast to the sea lion, this animal is endowed with a small but significant sucrase activity. Along with (fully active) pro-sucrase-isomaltase, sea lion isomaltase is one of the very few examples of enzymes with more than one active site on a single polypeptide chain acting "in parallel" (rather than "in series"). Furthermore, this enzyme triggers some interesting questions on the phylogenetical pedigree of small intestinal sucrase-isomaltase.  相似文献   

2.
We purified sucrase-isomaltase and sucrase-free isomaltase from a normal and a sucrase-deficient line, respectively, of the house musk shrew Suncus murinus and examined the effects of mutation on enzyme structure and activities. Recent cDNA cloning studies have predicted that sucrase-free mutant isomaltase lacks the C-terminal 69 amino acids of normal isomaltase, as well as the entire sucrase. On SDS-polyacrylamide gel electrophoresis purified sucrase-free isomaltase gave a single protein band of 103 kDa, while sucrase-isomaltase gave two major protein bands of 106 and 115 kDa. The 115, but not 106, kDa band was quite similar to the 103 kDa band on Western blotting with Aleuria aurantia lectin and antibody against shrew sucrase-isomaltase, suggesting that the 115 and 103 kDa bands are due to normal and mutant isomaltases, respectively, in accordance with the above prediction. Purified isomaltase and sucrase-isomaltase were similar in Km and Vmax (based on isomaltase mass) values for isomaltose hydrolysis and in inhibition of isomaltase activity by antibody against rabbit sucrase-isomaltase, suggesting that the enzymatic properties of isomaltase are mostly unaffected by mutation.  相似文献   

3.
Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is a potent time-dependent inhibitor of the sucrase-isomaltase complex purified from rat small intestine, in vitro. First-order kinetics for the inactivation of sucrase and isomaltase by castanospermine were observed. Protection studies showed that castanospermine competes for the glucosyl subsite with the substrates of sucrase and isomaltase. The second-order rate constants (k1) for the association reaction between castanospermine and the protein complex were calculated to be 6.5 X 10(3) and 0.3 X 10(3) M-1 s-1 for sucrase and isomaltase, respectively. Only barely detectable reactivation of the inhibited isomaltase was detectable over 24 h, whereas about 30% reactivation of the inhibited sucrase was observed in 24 h (k2 = 3.6 X 10(-6) s-1). These results suggest that castanospermine functions as a transition-state analog that binds extremely tightly to sucrase and isomaltase.  相似文献   

4.
BackgroundStarch constitutes one of the main sources of nutrition in the human diet and is broken down through a number of stages of digestion. Small intestinal breakdown of starch-derived substrates occurs through the mechanisms of small intestinal brush border enzymes, maltase-glucoamylase and sucrase-isomaltase. These enzymes each contain two functional enzymatic domains, and though they share sequence and structural similarities due to their evolutionary conservation, they demonstrate distinct substrate preferences and catalytic efficiency. The N-terminal isomaltase domain of sucrase-isomaltase has a unique ability to actively hydrolyze isomaltose substrates in contrast to the sucrase, maltase and glucoamylase enzymes.MethodsThrough phylogenetic analysis, structural comparisons and mutagenesis, we were able to identify specific residues that play a role in the distinct substrate preference. Mutational analysis and comparison with wild-type activity provide evidence that this role is mediated in part by affecting interactions between the sucrase and isomaltase domains in the intact molecule.ResultsThe sequence analysis revealed three residues proposed to play key roles in isomaltase specificity. Mutational analysis provided evidence that these residues in isomaltase can also affect activity in the partner sucrase domain, suggesting a close interaction between the domains.Major conclusionsThe sucrase and isomaltase domains are closely interacting in the mature protein. The activity of each is affected by the presence of the other.General Significance: There has been little experimental evidence previously of the effects on activity of interactions between the sucrase-isomaltase enzyme domains. By extension, similar interactions might be expected in the other intestinal α-glucosidase, maltase-glucoamylase.  相似文献   

5.
6.
7.
1. Disaccharidase activities of the small-intestinal brush border membrane were studied in six laboratory lines of the house musk shrew, Suncus murinus. 2. Sucrase activity was detected in all shrews of one line, but not in any shrew of three lines. In the other two lines it was found in some shrews, but not in the others. 3. Maltase, isomaltase, trehalase and lactase activities were found in all shrews of all the lines examined. 4. Sucrase was normally associated with isomaltase to form an enzyme complex. 5. Detergent-solubilized isomaltase, whether associated with sucrase or not, was inhibited by antibodies against rabbit sucrase-isomaltase to almost the same extent as the rabbit one, suggesting that isomaltase is not affected by a mutation(s) in sucrase.  相似文献   

8.
1. The maltase, sucrase, isomaltase and palatinase activities of the chick small intestine are localized in particles that sediment when centrifuged at 100000g for 90min. 2. Solubilization of the particle-bound disaccharidases without loss of activity was achieved by digestion with papain. Trypsin was less effective and caused a preferential solubilization of the sucrase, isomaltase and palatinase activities. 3. On Sephadex G-200 columns, the solubilized preparations yielded two disaccharidase peaks. The first peak was eluted close to the void volume of the column and contained all the sucrase, isomaltase and palatinase activities and some of the maltase activity. The remainder of the maltase activity was eluted beyond the total volume of the column. 4. Precipitation with ethanol did not affect the behaviour of the disaccharidases of gel filtration. 5. The maltase activity of the second peak on rechromatography in a buffer containing 0.01m-maltose was eluted close to the void volume. 6. Similar pH optima but different K(m) values were obtained for the maltase activities of the two peaks. 7. Heat-inactivation studies showed that the first peak contained two disaccharidase enzymes; one hydrolysed sucrose and maltose and the other hydrolysed isomaltose, palatinose and maltose. The second peak contained three disaccharidase enzymes all specific for the hydrolysis of maltose. 8. It is proposed that the intestinal disaccharidases of the chick exist in the form of two complexes: a sucrase-isomaltase complex and a maltase complex.  相似文献   

9.
The ability of purified pig intestinal sucrase/isomaltase (SI; EC 3.2.1.10/48) and glucosidase/maltase (GM; EC 3.2.1.20) to hydrolyze di- and oligosaccharides consisting of D-glucose and D-fructose residues and the corresponding alditols was studied. The products, after incubation, reflect different binding patterns at both catalytic sites of SI. The active site of the sucrase subunit cleaves alpha,beta-(1-->2) glycosidic bonds, and only two monomer units of the substrates bind with favorable affinity. Oligosaccharides and reduced oligosaccharides containing alpha-(1--6) and alpha-(1-->1) glycosidic bonds are hydrolyzed by isomaltase, and for the active site of this subunit more than two subsites were postulated. Moreover, different binding sites for various aglycons seem to exist for isomaltase. Oligosaccharide alcohols are cleaved at lower rates if the reduced sugar residue occupies the aglycon binding site. GM also hydrolyzes alpha-(1-->1) linkages, but at a lower rate. The enzyme has the ability to bind compounds containing residues other than D-glucose. There are indications for similarities between GM and the isomaltase subunit of SI in the binding mode of oligosaccharides.  相似文献   

10.
11.
12.
K Murato  D Monard 《FEBS letters》1982,144(2):321-325
The hog sucrase—isomaltase complex is anchored to the small-intestinal brush border membrane, as in the rabbit, via a hydrophobic segment located in the N-terminal region of the isomaltase subunit. The immediate precursor of the ‘final’ sucrase—isomaltase (i.e., pro-sucrase—isomaltase as prepared from adult hogs whose pancreas had been disconnected from the duodenum) is an amphiphilic single polypeptide chain of Mr 260 000–265 000. Its N-terminal sequence is virtually identical with (not merely homologous to) the corresponding region of the isomaltase subunit of ‘final’ sucrase-isomaltase. This shows that the isomaltase portion of pro-sucrase—isomaltase in the N-terminal ‘half’ of the precursor polypeptide chain. Thus the succession of domains in pro-sucrase—isomaltase and its mode of anchoring in the membrane could be deduced. On this basis a likely mechanism of biosynthesis and insertion is proposed.  相似文献   

13.
A detergent solubilised sucrase from monkey small intestine has been purified 388-fold to gel electrophoretic homogeneity with an overall recovery of 36%. The molecular weight of the enzyme was 263 kDa by gel filtration. Electrophoresis in the presence of SDS indicates that the enzyme is a hetero-dimer. Mixed substrate inhibition studies and inhibition by PCMB and Tris suggest the presence of two catalytically active sites in the form of maltase and sucrase with isomaltase activity being common to both sites. Polyclonal antiserum against the purified enzyme showed a single continuous precipitin line with the purified antigen.  相似文献   

14.
Limited tryptic digestion of native sucrase - isomaltase complex produced a more rapid destruction of isomaltase activity than sucrase activity. It was possible to isolate a partially fragmented sucrase subunits in high yields with a specific activity twice that of the native complex. Amino acid and carbohydrate analyses are reported and compared with the results obtained for sucrase - isomaltase complex and isomaltase subunit obtained by a different method.  相似文献   

15.
Assays for sucrase carried out on intestinal sonicates prepared from 18 different strains of mice revealed a threefold variation in specific activity, the values for CBA/Ca mice being significantly less than for any other strain. Further comparison of the CBA/Ca versus the C57BL/6J mouse showed this deficiency, which became established 2–4 weeks after birth, to apply to isomaltase as well as sucrase but not to maltase or trehalase. Backcross experiments indicated that this deficiency in sucrase activity was inherited as a single codominantly expressed genetic factor. The ability of the CBA/Ca mouse to regulate sucrase activity in response to changes in diet was also reduced compared to that of the C57BL/6J mouse. No difference could be detected in the affinity of sucrase for its substrate or in the ability of heat to denature sucrase prepared from CBA/Ca and C57BL/6J mice. It is suggested that part of the regulatory region of the gene coding for sucrase-isomaltase is modified in the CBA/Ca mouse and that this locus should be given the notation Suc-1 for future reference.This work supported by an MRC project grant to M. W. Smith.  相似文献   

16.
17.
18.
1. The maltase, isomaltase and invertase (sucrase) activities of solubilized mucosal preparations from human jejunum and ileum were studied with column chromatography on anion-exchange (diethylaminoethyl- and triethylaminoethyl-)cellulose and Sephadex G-200 gel. 2. On ion-exchange cellulose columns both kinds of enzyme preparations yielded two major disaccharidase peaks. The first peak contained maltase Ia (=isomaltase) and maltase Ib (=invertase). The second peak contained maltase II and maltase III. 3. On Sephadex G-200 gel columns jejunal preparations yielded the corresponding peaks as on ion-exchange columns, but the peaks appeared in the reverse order in the effluent. The ileal preparation studied yielded a single peak on gel columns, containing all the activities studied and eluted with the `void volume'. 4. Precipitation with ethanol did not affect the behaviour of the enzymes during ion-exchange chromatography. When gel filtration was performed after ethanol precipitation of the enzymes, however, two peaks were obtained also with the ileal preparation, and subfractionation of the invertase was obtained with both kinds of preparations. 5. The second peak from ion-exchange chromatograms, containing maltase II and maltase III, on concentration was found to have very weak isomaltase activity, probably exerted by these enzymes as such. This activity accounts for only about 1% of the total isomaltase activity of the mucosa. 6. The results support the concept of the specificity of the human small-intestinal disaccharidases previously described after heat-inactivation experiments. The subfractionation of the invertase that under certain conditions is seen on Sephadex G-200 columns appears most likely to be an artifact. Consequently the nomenclature for the human maltose-, isomaltose- and sucrose-splitting enzymes proposed by another research group after gel-filtration chromatography studies should be abandoned. It seems more logical to keep the nomenclature based on heat inactivation [maltase Ia (=isomaltase), maltase Ib (=invertase or sucrase), maltase II and maltase III] until increased knowledge about the specificity and structure of these enzymes makes possible a more rational nomenclature.  相似文献   

19.
The structure and catalytic function of rat intestinal sucrase-alpha-dextrinase (sucrase-isomaltase) were characterized in intact brush border membranes by differential denaturation in 1% SDS at 4, 37, 45, 55, and 100 degrees C, analysis by acrylamide electrophoresis, and subsequent renaturation by transfer to nitrocellulose and in situ analyses of immunoactivity and catalytic activity (immunoblotting and catalytic blotting). Both the sucrase and alpha-dextrinase activities were associated with two mature oligomers, with sucrase predominantly in a 250-260-kDa unit and dextrinase in a 330-350-kDa unit. While sucrase activity declined progressively in response to increasing temperature to 45 degrees C due to loss of active sites, alpha-dextrinase activity increased reciprocally (Vmax +176%). Three principal monomeric products of postinsertional processing comprise the oligomers: alpha, 140 kDa, which carries the sucrase active site; beta, 125 kDa, harboring the dextrinase active site; and gamma, 110 kDa, produced by removal of 185 amino acid residues from the N-terminus of the alpha. Rather than being a simple hybrid dimer, membrane-associated sucrase-alpha-dextrinase appears to consist of two major oligomeric forms having complex structural associations that dramatically affect the availability of the active catalytic sites at the brush border membrane surface.  相似文献   

20.
Lysosomal alpha-glucosidase (acid maltase) is essential for degradation of glycogen in lysosomes. Enzyme deficiency results in glycogenosis type II. The amino acid sequence of the entire enzyme was derived from the nucleotide sequence of cloned cDNA. The cDNA comprises 3636 nt, and hybridizes with a messenger RNA of approximately 3.6 kb, which is absent in fibroblasts of two patients with glycogenosis type II. The encoded protein has a molecular mass of 104.645 kd and starts with a signal peptide. Sites of proteolytic processing are established by identification of N-terminal amino acid sequences of the 110-kd precursor, and the 76-kd and 70-kd mature forms of the enzyme encoded by the cDNA. Interestingly, both amino-terminal and carboxy-terminal processing occurs. Sites of sugar-chain attachment are proposed. A remarkable homology is observed between this soluble lysosomal alpha-glucosidase and the membrane-bound intestinal brush border sucrase-isomaltase enzyme complex. It is proposed that these enzymes are derived from the same ancestral gene. Around the putative active site of sucrase and isomaltase, 10 out of 13 amino acids are identical to the corresponding amino acids of lysosomal alpha-glucosidase. This strongly suggests that the aspartic acid residue at this position is essential for catalytic function of lysosomal alpha-glucosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号