共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N(2) as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H(2). We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium. 相似文献
3.
Benini S Rypniewski WR Wilson KS Ciurli S 《Journal of inorganic biochemistry》2008,102(5-6):1322-1328
The structure of the cytochrome c′ from the purple non-sulfur phototrophic bacterium Rubrivivax gelatinosus was determined using two crystals grown independently at pH 6.3 and pH 8. The resolution attained for the two structures (1.29 Å and 1.50 Å for the crystals at high and low pH, respectively) is the highest to date for this class of proteins. The two structures were compared in detail in an attempt to investigate the influence of pH on the geometry of the haem and of the coordination environment of the Fe(III) ion. However, while the results suggest some small propensity for the movement of the metal atom out of the plane of the haem ring upon pH increase, the accuracy of the measurements at these two pH below the pK of the axial histidine is not sufficient to provide hard evidence of a shift in the iron position and associated changes. 相似文献
4.
Energy Generation from the CO Oxidation-Hydrogen Production Pathway in Rubrivivax gelatinosus
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Pin-Ching Maness Jie Huang Sharon Smolinski Vekalet Tek Gary Vanzin 《Applied microbiology》2005,71(6):2870-2874
When incubated in the presence of CO gas, Rubrivivax gelatinosus CBS induces a CO oxidation-H2 production pathway according to the stoichiometry CO + H2O → CO2 + H2. Once induced, this pathway proceeds equally well in both light and darkness. When light is not present, CO can serve as the sole carbon source, supporting cell growth anaerobically with a cell doubling time of nearly 2 days. This observation suggests that the CO oxidation reaction yields energy. Indeed, new ATP synthesis was detected in darkness following CO additions to the gas phase of the culture, in contrast to the case for a control that received an inert gas such as argon. When the CO-to-H2 activity was determined in the presence of the electron transport uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), the rate of H2 production from CO oxidation was enhanced nearly 40% compared to that of the control. Upon the addition of the ATP synthase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), we observed an inhibition of H2 production from CO oxidation which could be reversed upon the addition of CCCP. Collectively, these data strongly suggest that the CO-to-H2 reaction yields ATP driven by a transmembrane proton gradient, but the detailed mechanism of this reaction is not yet known. These findings encourage additional research aimed at long-term H2 production from gas streams containing CO. 相似文献
5.
Nagashima S Kamimura A Shimizu T Nakamura-Isaki S Aono E Sakamoto K Ichikawa N Nakazawa H Sekine M Yamazaki S Fujita N Shimada K Hanada S Nagashima KV 《Journal of bacteriology》2012,194(13):3541-3542
Rubrivivax gelatinosus is a facultative photoheterotrophic betaproteobacterium living in freshwater ponds, sewage ditches, activated sludge, and food processing wastewater. There have not been many studies on photosynthetic betaproteobacteria. Here we announce the complete genome sequence of the best-studied phototrophic betaproteobacterium, R. gelatinosus IL-144 (NBRC 100245). 相似文献
6.
Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus 总被引:1,自引:0,他引:1
Maness PC Huang J Smolinski S Tek V Vanzin G 《Applied and environmental microbiology》2005,71(6):2870-2874
When incubated in the presence of CO gas, Rubrivivax gelatinosus CBS induces a CO oxidation-H2 production pathway according to the stoichiometry CO + H2O --> CO2 + H2. Once induced, this pathway proceeds equally well in both light and darkness. When light is not present, CO can serve as the sole carbon source, supporting cell growth anaerobically with a cell doubling time of nearly 2 days. This observation suggests that the CO oxidation reaction yields energy. Indeed, new ATP synthesis was detected in darkness following CO additions to the gas phase of the culture, in contrast to the case for a control that received an inert gas such as argon. When the CO-to-H2 activity was determined in the presence of the electron transport uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), the rate of H2 production from CO oxidation was enhanced nearly 40% compared to that of the control. Upon the addition of the ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD), we observed an inhibition of H2 production from CO oxidation which could be reversed upon the addition of CCCP. Collectively, these data strongly suggest that the CO-to-H2 reaction yields ATP driven by a transmembrane proton gradient, but the detailed mechanism of this reaction is not yet known. These findings encourage additional research aimed at long-term H2 production from gas streams containing CO. 相似文献
7.
High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2. 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《The EMBO journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of alphabeta-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the alpha-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by approximately 6 A and one that protruded by approximately 14 A from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to approximately 9 A, and a change of its surface appearance. These results suggested that the alpha-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings ( approximately 120 A diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes. 相似文献
8.
9.
10.
In bacteria and fungi, the degree of carotenoid desaturation is determined by a single enzyme, the CrtI-type phytoene desaturase. In different organisms, this enzyme can carry out either three, four or even five desaturation steps. The purple bacterium Rubrivivax gelatinosus is the only known species in which reaction products of a 3-step and a 4-step desaturation (i.e. neurosporene and lycopene derivatives) accumulate simultaneously. The properties of this phytoene desaturation to catalyze neurosporene or lycopene were analyzed by heterologous complementations in Escherichia coli and by in vitro studies. They demonstrated that high enzyme concentrations or low phytoene supply favor the formation of lycopene. Under these conditions, CrtI from Rhodobacter spheroides can be forced in vitro to lycopene formation although this carotene is not synthesized in this species. All results can be explained by a model based on the competition between phytoene and neurosporene for the substrate binding site of phytoene desaturase. Mutations in CrtI from Rvi. gelatinosus have been generated resulting in increased lycopene formation in Escherichia coli. This modification in catalysis is due to increased amounts of CrtI protein. 相似文献
11.
Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gene. To study the biological role of carotenoids in photoprotection, the wild-type and the three carotenoid mutants were grown under different conditions. When exposed to photooxidative stress, only the carotenoid-less strains (crtB-) gave rise with a high frequency to four classes of mutants. In the first class, carotenoid biosynthesis was partially restored. The second class corresponded to photosynthetic-deficient mutants. The third class corresponded to mutants in which the LHI antenna level was decreased. In the fourth class, synthesis of the photosynthetic apparatus was inhibited only in aerobiosis. Molecular analyses indicated that the oxidative stress induced mutations and illegitimate recombination. Illegitimate recombination events produced either functional or non-functional chimeric genes. The R. gelatinosus crtB- strain could be very useful for studies of the SOS response and of illegitimate recombination induced by oxidants in bacteria. 相似文献
12.
Menin L Yoshida M Jaquinod M Nagashima KV Matsuura K Parot P Verméglio A 《Biochemistry》1999,38(46):15238-15244
In several strains of the photosynthetic bacterium Rubrivivax gelatinosus, the synthesis of a high midpoint potential cytochrome is enhanced 4-6-fold in dark aerobically grown cells compared with anaerobic photosynthetic growth. This observation explains the conflicting reports in the literature concerning the cytochrome c content for this species. This cytochrome was isolated and characterized in detail from Rubrivivax gelatinosus strain IL144. The redox midpoint potential of this cytochrome is +300 mV at pH 7. Its molecular mass, 9470 kDa, and its amino acid sequence, deduced from gene sequencing, support its placement in the cytochrome c8 family. The ratio of this cytochrome to reaction center lies between 0.8 and 1 for cells of Rvi. gelatinosus grown under dark aerobic conditions. Analysis of light-induced absorption changes shows that this high-potential cytochrome c8 can act in vivo as efficient electron donor to the photooxidized high-potential heme of the Rvi. gelatinosus reaction center. 相似文献
13.
Characterization of the core complex of Rubrivivax gelatinosus in a mutant devoid of the LH2 antenna
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 alphabeta subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The alpha one was formylated at its N-terminal residue and the N-terminal methionine of beta was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the alpha polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the alpha polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(3):650-655
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35°C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45°C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria. 相似文献
15.
Tanskul S Oda K Oyama H Noparatnaraporn N Tsunemi M Takada K 《Biochemical and biophysical research communications》2003,309(3):547-551
A novel type of fluorescence resonance energy transfer (FRET) combinatorial libraries were used for the characterization of alkaline serine proteinase produced from Rubrivivax gelatinosus KDDS1. This enzyme was the first serine proteinase characterized from photosynthetic bacteria. The proteinase was found to prefer Met and Phe at the P1 position, Ile and Lys at the P2 position, and Arg and Phe at the P3 position. To date, no serine proteinase has exhibited a preference for Met at the P1 position. Thus, the alkaline serine proteinase from R. gelatinosus KDDS1 is very unique in terms of substrate specificity. A highly sensitive substrate, Boc-Arg-Ile-Met-MCA, was synthesized for kinetic study based on the results reported here. The optimum pH of the enzyme for this substrate was pH 10.7, and the values of kcat, Km, and kcat/Km were 23.7 s(-1), 15.4 microM, and 1.54 microM(-1) s(-1), respectively. 相似文献
16.
Oda K Tanskul S Oyama H Noparatnaraporn N 《Bioscience, biotechnology, and biochemistry》2004,68(3):650-655
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35 degrees C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45 degrees C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria. 相似文献
17.
Jirsakova Vladimira Reiss-Husson Françoise Ranck Jean-Luc Moya Ismaël 《Photosynthesis research》1997,54(1):35-43
The core light-harvesting complex B875 isolated from the purple bacterium Rubrivivax gelatinosus and its different spectral forms B820 and B840, which are depleted of carotenoid, were investigated by steady-state and time-resolved fluorescence, and by electron microscopy. Images of B875 have been shown to contain cyclic oligomers with a diameter of 150–200 Å and with a central hole of 25 Å [Jirsakova V, Reiss-Husson F and Ranck JL (1996) Biochim Biophys Acta 1277: 150–160]. Dilute B820 samples contained heterogeneous, compact particles that tend to aggregate with increasing concentration of protein, forming clumps without any visible substructure. At the same time the absorption maximum of such aggregates shifted to 840 nm. Fluorescence emission and life times were analyzed by single photon counting. In B875 samples the major component emitted at 892 nm with a life time of 0.64 ns. B820 samples emitted at 830 nm with a life-time of 1 ns. An additional short life-time component of 0.3–0.4 ns was found in B820 and emitted at about 860 nm; its contribution increased with the B820 concentration. This latter component is attributed to the fluorescence quenching occuring within the non-native aggregates of B820 formed in the absence of carotenoid. When the B875 antenna was reconstituted from B820 subunit and hydroxyspheroidene, it presented an emission spectrum and a fluorescence decay identical to those observed in the native core complex, pointing to the structural role of the carotenoid for the proper architecture of this antenna. 相似文献
18.
The performance and the granules characteristics of a 450 m(3) -UASB reactor operating for 1228 days, treating poultry slaughterhouse wastewater with an average COD reduction of 85% was examined. Granules were sampled in three different positions along the vertical central line of the reactor, revealing variations in the concentration of volatile total solids. Although the reactor had been in operation for an extended period of time, granule sizes of 0.5-1.5 mm appeared to predominate. The hollow core was well defined for granules with sizes ranging from 2 to 3 mm in all the sampling ports. The granules exhibited no layered microbial distribution and were packed with different morphotype cells intertwined randomly throughout the cross-section. Methanogenic Archaea predominated in the granules taken from every sampling port along the reactor. The results indicated that the characterization of the granules is a useful tool for the adoption of operational strategies toward optimization of UASB reactors. 相似文献
19.
I Agalidis S Othman A Boussac F Reiss-Husson A Desbois 《European journal of biochemistry》1999,261(1):325-336
The tetraheme cytochrome c subunit of the Rubrivivax gelatinosus reaction center was isolated in the presence of octyl beta-D-thioglucoside by ammonium sulfate precipitation and solubilization at pH 9 in a solution of Deriphat 160. Several biochemical properties of this purified cytochrome were characterized. In particular, it forms small oligomers and its N-terminal amino acid is blocked. In the presence or absence of diaminodurene, ascorbate and dithionite, different oxidation/reduction states of the isolated cytochrome were studied by absorption, EPR and resonance Raman spectroscopies. All the data show two hemes quickly reduced by ascorbate, one heme slowly reduced by ascorbate and one heme only reduced by dithionite. The quickly ascorbate-reduced hemes have paramagnetic properties very similar to those of the two low-potential hemes of the reaction center-bound cytochrome (gz = 3.34), but their alpha band is split with two components peaking at 552 nm and 554 nm in the reduced state. Their axial ligands did not change, being His/Met and His/His, as indicated by the resonance Raman spectra. The slowly ascorbate-reduced heme and the dithionite-reduced heme are assigned to the two high-potential hemes of the bound cytochrome. Their alpha band was blue-shifted at 551 nm and the gz values decreased to 2.96, although the axial ligations (His/Met) were conserved. It was concluded that the estimated 300 mV potential drop of these hemes reflected changes in their solvent accessibility, while the reduction in gz indicates an increased symmetry of their cooordination spheres. These structural modifications impaired the cytochrome's essential function as the electron donor to the photooxidized bacteriochlorophyll dimer of the reaction center. In contrast to its native state, the isolated cytochrome was unable to reduce efficiently the reaction center purified from a Rubrivivax gelatinosus mutant in which the tetraheme was absent. Despite the conformational changes of the cytochrome, its four hemes are still divided into two groups with a pair of low-potential hemes and a pair of high-potential hemes. 相似文献
20.
The phytoene desaturase CrtI from Rubrivivax gelatinosus catalyzes simultaneously a three- and four-step desaturation producing both neurosporene and lycopene. These carotenes are intermediates for the synthesis of spheroidene and spirilloxanthin, respectively. Two different mutation libraries for the crtI gene from R. gelatinosus were constructed to screen for modified enzymes which synthesize almost exclusively either neurosporene or lycopene. The resulting mutants carried between one and four amino acid exchanges and at least one of them affected the secondary protein structure by shortening or extending one of the helices. A prominent amino acid which was exchanged in the neurosporene or lycopene-forming desaturase was leucine 208. Enzyme kinetic studies were carried out with the L208 modified desaturase and the specificities for phytoene and neurosporene as substrates determined. Higher and lower values correlate well with the higher or lower potential for the synthesis of lycopene from neurosporene. TopPred analysis of the mutations of L208 indicated that the location is in a highly hydrophobic membrane-integrated region which is a good candidate for the substrate-binding site of the desaturase. 相似文献