首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epidermal growth factor increases lung liquid clearance in rat lungs   总被引:9,自引:0,他引:9  
Epidermal growthfactor (EGF) has been reported to stimulate the proliferation ofepithelial cells and increase Na+flux andNa+-K+-ATPasefunction in alveolar epithelial cell monolayers. Increases inNa+-K+-ATPasein alveolar type II cells (AT2) have been associated with increasedactive Na+ transport and lungedema clearance across the rat alveolar epithelium in a model ofproliferative lung injury. Thus we tested whether administration ofaerosolized EGF to rat lungs would increase activeNa+ transport and lung liquidclearance. Sixteen adult Sprague-Dawley male rats were randomized tothree groups. To a group of six rats, an aerosol generated from 20 µgof EGF in saline was delivered to the lungs, to a second group of fiverats only aerosolized saline was delivered, and a third group of fiverats without treatment served as the control. Forty-eight hourspostaerosolization of rat lungs with EGF there was an ~40% increasein active Na+ transport and lungliquid clearance compared with control rats, in the absence of changesin22Na+,[3H]mannitol, andalbumin permeabilities. TheNa+-K+-ATPaseactivity in AT2 cells harvested from these lungs was increased in ratsthat received aerosolized EGF compared with AT2 cells from both controlrats and rats receiving aerosolized saline. These results support thehypothesis that in vivo delivery of EGF aerosols upregulates alveolarepithelialNa+-K+-ATPaseand increases lung liquid clearance in rats.

  相似文献   

2.
Unlike other fatty acid-binding proteins, cutaneous (epidermal) fatty acid-binding proteins contain a large number of cysteine residues. The status of the five cysteine residues in rat cutaneous fatty acid-binding protein was examined by chemical and mass-spectrometric analyses. Two disulfide bonds were identified, between Cys-67 and Cys-87, and between Cys-120 and Cys-127, though extent of formation of the first disulfide bond was rather low in another preparation. Cys-43 was free cysteine. Homology modeling study of the protein indicated the close proximity of the sulfur atoms of these cysteine pairs, supporting the presence of the disulfide bonds. These disulfide bonds appear not to be directly involved in fatty acid-binding activity, because a recombinant rat protein expressed in Escherichia coli in which all five cysteines are fully reduced showed fatty acid-binding activity as examined by displacement of a fluorescent fatty acid analog by long-chain fatty acids. However, the fact that the evolutionarily distant shark liver fatty acid-binding protein also has a disulfide bond corresponding to the one between Cys-120 and Cys-127, and that fatty acid-binding proteins play multiple roles suggests that some functions of cutaneous fatty acid-binding protein might be regulated by the cellular redox state through formation and reduction of disulfide bonds. Although we cannot completely exclude the possibility of oxidation during preparation and analysis, it is remarkable that a protein in cytosol under normally reducing conditions appears to contain disulfide bonds.  相似文献   

3.
Development of preterm infant lungs is frequently impaired resulting in bronchopulmoary dysplasia (BPD). BPD results from interruption of physiologic anabolic intrauterine conditions, the inflammatory basis and therapeutic consequences of premature delivery, including increased oxygen supply for air breathing. The latter requires surfactant, produced by alveolar type II (AT II) cells to lower surface tension at the pulmonary air:liquid interface. Its main components are specific phosphatidylcholine (PC) species including dipalmitoyl-PC, anionic phospholipids and surfactant proteins. Local antioxidative enzymes are essential to cope with the pro-inflammatory side effects of normal alveolar oxygen pressures. However, respiratory insufficiency frequently requires increased oxygen supply. To cope with the injurious effects of hyperoxia to epithelia, recombinant human keratinocyte growth factor (rhKGF) was proposed as a surfactant stimulating, non-catabolic and epithelial-protective therapeutic. The aim of the present study was to examine the qualification of rhKGF to improve expression parameters of lung maturity in newborn rats under hyperoxic conditions (85 % O2 for 7 days). In response to rhKGF proliferating cell nuclear antigen mRNA, as a feature of stimulated proliferation, was elevated. Similarly, the expressions of ATP-binding cassette protein A3 gene, a differentiation marker of AT II cells and of peroxiredoxin 6, thioredoxin and thioredoxin reductase, three genes involved in oxygen radical protection were increased. Furthermore, mRNA levels of acyl-coA:lysophosphatidylcholine acyltransferase 1, catalyzing dipalmitoyl-PC synthesis by acyl remodeling, and adipose triglyceride lipase, considered as responsible for fatty acid supply for surfactant PC synthesis, were elevated. These results, together with a considerable body of other confirmative evidence, suggest that rhKGF should be developed into a therapeutic option to treat preterm infants at risk for impaired lung development.  相似文献   

4.
Rat liver fatty acid-binding protein (FABP) is a 14.3-kDa cytosolic protein which binds long chain free fatty acids (ffa) and is believed to participate in intracellular movement and/or distribution of ffa. In the studies described here fluorescently labeled ffa were used to examine the physical nature of the ffa-binding site on FABP. The fluorescent analogues were 16- and 18-carbon ffa with an anthracene moiety covalently attached at eight different points along the length of the hydrocarbon chain (AOffa). Emission maxima of all FABP-bound AOffa were found to be considerably blue-shifted with respect to emission of phospholipid membrane-bound AOffa, suggesting a high degree of motional constraint for protein-bound ffa. Large fluorescence quantum yields and long excited state life-times indicate that the FABP-binding site for ffa is highly hydrophobic. Analysis of rotational correlation times for the FABP-bound AOffa suggest that the ffa are tightly bound to the protein. Variation of the quantum yield with attachment site suggests that the carboxylic acid group of the fatty acyl chain is located near the aqueous surface of the FABP. The rest of the ffa hydrocarbon chain is buried within the protein in a hydrophobic pocket and is particularly constrained at the midportion of the acyl chain.  相似文献   

5.
We investigated the effects of lung injury due to alpha-naphthylthiourea (ANTU) on pulmonary vascular reactivity. Rats were treated with ANTU (10 mg/kg ip) or the vehicle Tween 80. Four hours later, lungs from ANTU-treated rats had increased wet-to-dry weight ratios, bronchial lavage protein concentrations, and perivascular edema. To test vascular reactivity, lungs were isolated and perfused with blood at constant flow rate, while mean pulmonary arterial pressure was monitored. ANTU-treated lungs vasoconstricted earlier than Tween-treated lungs in response to severe airway hypoxia (fractional inspired O2 0%). ANTU-treated lungs vasoconstricted in response to 10% O2, while Tween-treated lungs failed to respond to 10% O2, indicating that the threshold for hypoxic vasoconstriction was decreased by ANTU. ANTU also decreased the threshold for and increased the magnitude of angiotensin II pressor responses, indicating that the increased vasoreactivity was not specific for hypoxia. Addition of meclofenamate to perfusates increased the rate and magnitude of responses to 0% O2 in Tween-treated lungs, but did not change the responses of ANTU-treated lungs. Light microscopy of ANTU-treated lungs showed no pulmonary arterial obstruction, and electron microscopy revealed mild capillary endothelial cell injury. We conclude that enhanced pulmonary vascular reactivity accompanies the increased-permeability pulmonary edema caused by ANTU. A similar increase in vasoreactivity might contribute to pulmonary hypertension observed in patients with the adult respiratory distress syndrome.  相似文献   

6.
7.
Epidermal growth factor in the rat lung   总被引:1,自引:0,他引:1  
Epidermal Growth Factor (EGF) in pharmacological doses is able to induce precoccious lung maturation in rabbits and sheeps. As EGF is probably acting in a para- or autocrine way, we have searched for EGF in the lungs. We report EGF immunoreactivity to be present in the type II pneumocytes of the rat from a couple of days prior to birth and throughout life. Further, we report EGF immunoreactivity to be present in cells in the bronchi and the bronchioles from day 20-21 of gestation and throughout life. G-200 gelchromatography of lung extracts indicates that the EGF-reactive material is a high molecular weight form of EGF. Since previous studies have shown that EGF in pharmacological doses is able to promote lung maturation, our results may imply a physiological role for EGF in the lungs.  相似文献   

8.
Summary Epidermal Growth Factor (EGF) in pharmacological doses is able to induce precoccious lung maturation in rabbits and sheeps. As EGF is probably acting in a para- or autocrine way, we have searched for EGF in the lungs.We report EGF immunoreactivity to be present in the type II pneumocytes of the rat from a couple of days prior to birth and throughout life. Further, we report EGF immunoreactivity to be present in cells in the bronchi and the bronchioles from day 20–21 of gestation and throughout life. G-200 gelchromatography of lung extracts indicates that the EGF-reactive material is a high molecular weight form of EGF.Since previous studies have shown that EGF in pharmacological doses is able to promote lung maturation, our results may imply a physiological role for EGF in the lungs.  相似文献   

9.
The concentration of EGF immunoreactivity in rat whey increases from 0.3 pmol/ml at lactation day 1 to 2.0 pmol/ml at lactation day 19. The concentration of EGF is not influenced when the rats undergo sialoadenectomy prior to mating. On S-200 gel chromatography, almost all EGF-reactivity in rat whey elutes as a broad peak corresponding to a Stokes radius of 4.0 nm (an approximate molecular weight of 80 kDa). Almost no 6 kDa EGF is present. Judged by gel filtration of whey pre-incubated with 125I-EGF (6 kDa), no binding protein for EGF is present in rat whey. When rat milk is incubated overnight at 37 degrees C, the 80 kDa EGF is degraded and elutes as a peak with a Stokes radius of 2.7 nm, corresponding to a molecular weight of approximately 35 kDa EGF and as a peak corresponding to 6 kDa EGF. Also, after partial purification by immuno-affinity chromatography, the EGF-reactive material in rat whey behaves as a peptide with a Stokes radius of 2.7 nm, corresponding to a molecular weight of approximately 35 kDa at gel filtration. Comparative binding studies between EGF purified from the submandibular glands and the EGF purified from rat whey confirm differences in the binding to antibodies raised against submandibular EGF, but not in binding to the EGF-receptor. Our results make it unlikely that EGF in rat whey is derived from the submandibular glands.  相似文献   

10.
The inactive 2Fe species of the Fe protein of the nitrogenase of Klebsiella pneumoniae was generated by treating oxidized Fe protein (Kp2) with MgATP and chelator. Incubation of the 2Fe species of Kp2 with the sulphurtransferase rhodanese in the presence of thiosulphate, ferric citrate and reduced lipoate reproducibly restored activity. The extent of restoration of activity depended on the molar ratio of 2Fe Kp2 to rhodanese and was time-dependent. Re-activation did not occur in the reaction mixture lacking rhodanese.  相似文献   

11.
Characterization of a fatty acid-binding protein from rat heart   总被引:3,自引:0,他引:3  
A fatty acid-binding protein has been isolated from rat heart and purified by gel filtration chromatography on Sephadex G-75 and anion-exchange chromatography on DE52. The circular dichroic spectrum of this protein was not affected by protein concentration, suggesting that it does not aggregate into multimers. Computer analyses of the circular dichroic spectrum predicted that rat heart fatty acid-binding protein contains approximately 22% alpha-helix, 45% beta-form and 33% unordered structure. Immunological studies showed that the fatty acid-binding proteins from rat heart and rat liver are immunochemically unrelated. The amino acid composition and partial amino acid sequence of the heart protein indicated that it is structurally related to, but distinct from, other fatty acid-binding proteins from liver, intestine, and 3T3 adipocytes. Using a binding assay which measures the transfer of fatty acids between donor liposomes and protein (Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K. (1984) J. Biol. Chem. 259, 13395-13401), it was shown that both rat heart and liver fatty acid-binding proteins bind 2 mol of oleic acid or palmitic acid/mol of protein. The structural and functional relationship of rat heart fatty acid-binding protein to fatty acid-binding proteins from other tissues is discussed.  相似文献   

12.
In a previous study, we purified three selenium-binding proteins (molecular masses 56, 14, and 12 kDa) from mouse liver using column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The aim of the present study was to determine the amino acid sequence of the 14-kDa protein thereby establishing any relationship with known proteins. Although the amino terminus of the 14-kDa protein was blocked, separate in situ digestions of the protein with endoproteinases Glu-c and Lys-c gave overlapping peptides that provided a continuous sequence of 93 amino acids. This sequence exhibited a 92.5% sequence homology with rat liver fatty acid-binding protein. In situ enzymatic digestion and partial sequencing of a 12-kDa selenium-binding protein revealed identical homology to the 14-kDa protein. The 14-kDa protein bound specifically to an oleate-affinity column from which the protein and 75Se coeluted. Delipidation or sodium dodecyl sulfate treatment failed to remove 75Se from the protein, indicating that the selenium moiety was tightly bound to the protein. These observations confirm that the mouse liver selenium-binding 14-kDa protein is a fatty acid-binding protein. The nature of the selenium linkage to the protein still needs to be explored.  相似文献   

13.
Cell culture systems have demonstrated a role for cytoplasmic fatty acid-binding proteins (FABP) in lipid metabolism, although a similar function in intact animals is unknown. We addressed this issue using heart fatty acid-binding protein (H-FABP) gene-ablated mice. H-FABP gene ablation reduced total heart fatty acid uptake 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6 compared with controls, respectively. Similarly, the amount of fatty acid found in the aqueous fraction was reduced 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6, respectively. Less [1-(14)C]16:0 entered the triacylglycerol pool, with significant redistribution of fatty acid between the triacylglycerol pool and the total phospholipid pool. Less [1-(14)C]20:4n-6 entered each lipid pool measured, but these changes did not alter the distribution of tracer among these pools. In gene-ablated mice, significantly more [1-(14)C]16:0 was targeted to choline and ethanolamine glycerophospholipids, whereas more [1-(14)C]20:4n-6 was targeted to the phosphatidylinositol (PtdIns) pool. H-FABP gene ablation significantly increased PtdIns mass 1.4-fold but reduced PtdIns 20:4n-6 mass 30%. Consistent with a reported effect of FABP on plasmalogen mass, ethanolamine plasmalogen mass was reduced 30% in gene-ablated mice. Further, 20:4n-6 mass was reduced in each of the three other major phospholipid classes, suggesting H-FABP has a role in maintaining steady-state 20:4n-6 mass in heart. In summary, H-FABP was important for heart fatty acid uptake and targeting of fatty acids to specific heart lipid pools as well as for maintenance of phospholipid pool mass and acyl chain composition.  相似文献   

14.
The concentration of fatty acid-binding protein in rat liver was examined by SDS/polyacrylamide-gel electrophoresis, by Western blotting and by quantifying the fluorescence enhancement achieved on the binding of the fluorescent probe 11-(dansylamino)undecanoic acid. A 2-3-fold increase in the concentration of this protein produced by treatment of rats with the peroxisome proliferator tiadenol was readily detected; however, only a small variation in the concentration of the protein due to a diurnal rhythm was observed. This result contradicts the 7-10-fold variation previously reported for this protein [Hargis, Olson, Clarke & Dempsey (1986) J. Biol. Chem. 261, 1988-1991].  相似文献   

15.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant, 15,124-Da polypeptide found in the cytosol of small intestinal epithelial cells (enterocytes). It is homologous to rat liver fatty acid-binding protein (L-FABP), a 14,273-Da cytosolic protein which is found in enterocytes as well as hepatocytes. It is unclear why the small intestinal epithelium contains two abundant fatty acid-binding proteins. A systematic comparative analysis of the ligand binding characteristics of the two FABPs has not been reported. To undertake such a study we expressed the coding region of a full length I-FABP cDNA in Escherichia coli and purified large quantities of the protein. We also purified rat L-FABP from a similar, previously described expression system (Lowe, J. B., Strauss, A. W., and Gordon, J. I. (1984) J. Biol. Chem. 259, 12696-12704). Analysis of fatty acids associated with each of the homogeneous E. coli-derived FABPs suggested that the two proteins differed in their ligand binding specificity and capacity. All of the fatty acids associated with I-FABP were saturated while 30% of the E. coli fatty acids bound to L-FABP were unsaturated (16:1, 18:1, 18:2). We directly analyzed the ability of I- and L-FABP to bind fatty acids of different chain length and degree of saturation using a hydroxyalkoxypropyl dextran-based assay. Scatchard analysis revealed that each mole of L-FABP can bind up to 2 mol of long chain fatty acid while each mole of I-FABP can bind only 1 mole of fatty acid. L-FABP exhibited a relatively higher affinity for unsaturated fatty acids (oleate, arachidonate) than for saturated fatty acid (palmitate). By contrast, we were not able to detect a significant difference in the affinity of I-FABP for palmitate, oleate, and arachidonate. Neither protein exhibited any appreciable affinity for fatty acids whose chain length was less than C16. The observed differences in ligand affinities and capacities suggest that these proteins may have distinct roles in metabolism and/or compartmentalization of fatty acids within enterocytes.  相似文献   

16.
Adipocyte-specific fatty acid-binding protein (A-FABP) is a cytoplasmic protein that is expressed in adipocytes and is closely associated with insulin resistance, metabolic syndrome, and Type 2 diabetes. We investigated the relationship between A-FABP as a surrogate marker of metabolic syndrome and non-alcoholic fatty liver disease (NAFLD) in apparently healthy subjects. We assessed clinical and biochemical metabolic parameters and measured serum levels of A-FABP, high-sensitivity C-reactive protein and tumor necrosis factor-α (TNF-α) in 494 subjects who were divided into two groups according to the presence of NAFLD by abdominal ultrasonography. All parameters associated with metabolic syndrome were significantly higher in patients with NAFLD (P<.001). A-FABP showed positive correlation with TNF-α, homeostasis model assessment index of insulin resistance (HOMA-IR), and metabolic syndrome (P<.001) when adjusted for age and sex. The odds ratio for the risk of NAFLD in the highest tertile of A-FABP compared with the lowest tertile was 7.36 (CI 3.80-14.27, P<.001) after adjustment for age and sex; 4.52 (CI 2.22-9.20, P<.001) after adjustment for age, sex, HOMA-IR and metabolic syndrome and 2.86 (CI 1.11-7.35, P<.05) after further adjustment for all metabolic parameters including TNF-α. The serum level of A-FABP was independently associated with NAFLD and showed significant correlation with TNF-α, HOMA-IR, and metabolic syndrome.  相似文献   

17.
A fatty acid-binding protein has been identified and isolated from the cytosol fraction of rat brain. The fatty acid-binding protein was purified to homogeneity by gel filtration and preparative isoelectric focusing. The binding protein was different from Z protein from rat liver in its isoelectric point and immunological reactivity, in spite of its similar molecular weight of 12,000. Rabbit antibodies against rat liver Z protein were used to demonstrate that the fatty acid-binding proteins from rat liver and brain are immunologically unrelated, and that no Z protein is present in rat brain cytosol.  相似文献   

18.
We detected the presence of a fatty acid-binding protein (FABP) in rat kidney cytosols. This protein was eluted and purified 9.3-fold by sequential gel filtration and anion-exchange chromatography. Homogeneity was shown by a single band on polyacrylamide gel with a molecular weight of about 15,500. It had an optimum binding pH of 7.4. The binding of palmitate to the protein was saturable. Examination of fatty acid binding revealed the presence of a single class of fatty acid-binding sites. The apparent dissociation constant was 1.0 microM and the maximal binding capacity was 48 nmol/mg of protein. This protein showed similar binding characteristics for palmitate, oleate, and arachidonate. Rabbit antibody to this cytosolic FABP gave a single precipitin line with the antigen and selectively inhibited [14C]palmitate binding to the protein.  相似文献   

19.
Epidermal growth factor receptor kinase translocation and activation in vivo   总被引:12,自引:0,他引:12  
The rat liver epidermal growth factor (EGF) receptor was assessed for EGF-dependent autophosphorylation as well as phosphorylation of a defined exogenous substrate in purified plasmalemma and Golgiendosome fractions isolated from rat liver homogenates. While EGF-dependent kinase activity was readily detected in plasmalemma the corresponding activity in Golgi-endosome fractions required detergent. Consequent to the systemic injection of EGF in vivo, the majority (approximately 60%) of receptor as evaluated by 125I-EGF binding was rapidly lost (T 1/2 approximately 8 min) from the plasmalemma and correspondingly accumulated in the Golgi-endosome fraction in a dose-dependent manner. Electron microscope radioautography of 125I-EGF uptake into Golgi-endosome fractions identified internalization into lipoprotein-filled vesicles of heterogenous size and shape but not into stacked saccules of the Golgi apparatus. Evaluation of receptor kinase activity in plasmalemma fractions isolated at various times after EGF injection in vivo showed more rapid loss of EGF-dependent autophosphorylation activity (T 1/2 approximately 10 s) than of receptor content (T 1/2 approximately 8 min). In contrast to the EGF receptor kinase of the plasmalemma fraction, kinase activity accumulating in endosomes was activated, i.e. maximally stimulated, in the absence of EGF or Triton X-100 in vitro. Furthermore, following the peak time of accumulation of EGF receptor kinase in endosomes (5-15 min) EGF-dependent autophosphorylation activity and EGF receptor content were lost more slowly (T 1/2 approximately 27 and 87 min for the loss of autophosphorylation activity and receptor content, respectively). The rapidity of translocation of activated EGF receptor into endosomes (30 s) and the dose response to low levels (1 microgram) of EGF injected are consistent with a physiological role for internalized EGF receptor kinase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号