首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Globally, species distribution patterns in the deep sea are poorly resolved, with spatial coverage being sparse for most taxa and true absence data missing. Increasing human impacts on deep‐sea ecosystems mean that reaching a better understanding of such patterns is becoming more urgent. Cold‐water stony corals (Order Scleractinia) form structurally complex habitats (dense thickets or reefs) that can support a diversity of other associated fauna. Despite their widely accepted ecological importance, records of scleractinian corals on seamounts are patchy and simply not available for most of the global ocean. The objective of this paper is to model the global distribution of suitable habitat for stony corals on seamounts. Location Seamounts worldwide. Methods We compiled a database containing all accessible records of scleractinian corals on seamounts. Two modelling approaches developed for presence‐only data were used to predict global habitat suitability for seamount scleractinians: maximum entropy modelling (Maxent) and environmental niche factor analysis (ENFA). We generated habitat‐suitability maps and used a cross‐validation process with a threshold‐independent metric to evaluate the performance of the models. Results Both models performed well in cross‐validation, although the Maxent method consistently outperformed ENFA. Highly suitable habitat for seamount stony corals was predicted to occur at most modelled depths in the North Atlantic, and in a circumglobal strip in the Southern Hemisphere between 20° and 50° S and shallower than around 1500 m. Seamount summits in most other regions appeared much less likely to provide suitable habitat, except for small near‐surface patches. The patterns of habitat suitability largely reflect current biogeographical knowledge. Environmental variables positively associated with high predicted habitat suitability included the aragonite saturation state, and oxygen saturation and concentration. By contrast, low levels of dissolved inorganic carbon, nitrate, phosphate and silicate were associated with high predicted suitability. High correlation among variables made assessing individual drivers difficult. Main conclusions Our models predict environmental conditions likely to play a role in determining large‐scale scleractinian coral distributions on seamounts, and provide a baseline scenario on a global scale. These results present a first‐order hypothesis that can be tested by further sampling. Given the high vulnerability of cold‐water corals to human impacts, such predictions are crucial tools in developing worldwide conservation and management strategies for seamount ecosystems.  相似文献   

2.
3.
Evaluating presence and habitat requirements of small carnivores is essential for their conservation. The Eurasian pine marten Martes martes, often described as a habitat specialist associated primarily with forest habitats, has been recently found to live even in patchily wooded country and in shrublands. We evaluated the environmental factors that determine the distribution of the pine marten in a Mediterranean landscape on the island of Sardinia (central Italy). Camera trapping sessions and scat surveys were carried out to assess the presence of the species, then a potential distribution model was developed using ecological niche factor analysis (ENFA), which requires only presence data. The pine marten selected highest altitudes, shrublands, rocky areas, and woodlands, and avoided urban areas and arable lands. Our results indicate that pine marten distribution in our study area is constrained by these variables. The ENFA analysis provided important clues about the distribution range of M. martes and its preferential environmental conditions, updating knowledge of its ecological requirements in Italy.  相似文献   

4.
Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche‐based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi‐aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30‐m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent‐predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability‐fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.  相似文献   

5.
Climate change poses a serious threat to biodiversity. Predicting the effects of climate change on the distribution of a species' habitat can help humans address the potential threats which may change the scope and distribution of species. Pterocarya stenoptera is a common fast‐growing tree species often used in the ecological restoration of riverbanks and alpine forests in central and eastern China. Until now, the characteristics of the distribution of this species' habitat are poorly known as are the environmental factors that influence its preferred habitat. In the present study, the Maximum Entropy Modeling (Maxent) algorithm and the Genetic Algorithm for Ruleset Production (GARP) were used to establish the models for the potential distribution of this species by selecting 236 sites with known occurrences and 14 environmental variables. The results indicate that both models have good predictive power. Minimum temperature of coldest month (Bio6), mean temperature of warmest quarter (Bio10), annual precipitation (Bio12), and precipitation of driest month (Bio14) were important environmental variables influencing the prediction of the Maxent model. According to the models, the temperate and subtropical regions of eastern China had high environmental suitability for this species, where the species had been recorded. Under each climate change scenario, climatic suitability of the existing range of this species increased, and its climatic niche expanded geographically to the north and higher elevation. GARP predicted a more conservative expansion. The projected spatial and temporal patterns of P. stenoptera can provide reference for the development of forest management and protection strategies.  相似文献   

6.
To determine what shapes the distributions of cryptic species, we aimed to unravel ecological niches and geographical distributions of three cryptic bat species complexes in Iberia, Plecotus auritus/begognae, Myotis mystacinus/alcathoe and Eptesicus serotinus/isabellinus (with 44, 69, 66, 27, 121 and 216 records, respectively), considering ecological interactions and biogeographical patterns. Species distribution models (SDMs) were built using a presence‐only technique (Maxent), incorporating genetically identified species records with environmental variables (climate, habitat, topography). The most relevant variables for each species’ distribution and respective response curves were then determined. SDMs for each species were overlapped to assess the contact zones within each complex. Niche analyses were performed using niche metrics and spatial principal component analyses to study niche overlap and breadth. The Plecotus complex showed a parapatric distribution, although having similar biogeographical affinities (Eurosiberian), possibly explained by competitive exclusion. The Myotis complex also showed Eurosiberian affinities, with high overlap between niches and distribution, suggesting resource partitioning between species. Finally, E. serotinus was associated with Eurosiberian areas, while E. isabellinus occurred in Mediterranean areas, suggesting possible competition in their restricted contact zone. This study highlights the relevance of considering potential ecological interactions between similarly ecological species when assessing species distributions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 ,150–162.  相似文献   

7.
The genus Phymaturus (Reptilia: Liolaemidae) is distributed in the mountains and rocky plateaux of Argentina and Chile and comprises two groups of species, palluma and patagonicus. The two lineages have diverged early in the evolution of the genus and up to today, there is very little geographical overlap between them. We worked with records of localities from the literature, herpetological collections and field data to evaluate habitat suitability of the genus Phymaturus. We used 11 environmental variables to develop environmental niche models (ENMs) for each group within the genus using the Maxent software, and to determine those variables that best explain the distribution of each group. We also estimated measures of niche similarity using ENMTools to determine whether niche differentiation is real or apparent. The geographical overlap between the groups was very low considering the large geographical range of the genus. Some variables, such as mean annual temperature, soil type and bare soil cover, have a high contribution to the models for both groups. The current niche overlap between Phymaturus groups indicates that the environmental niches of the palluma and patagonicus groups are not equivalent. Based on background analysis, we cannot reject the hypothesis that similarity (or divergence) between groups of Phymaturus is no more than expected based on the availability of habitat. The results of this study are a first approximation to the knowledge of the environmental variables associated with the palluma and patagonicus groups, and reveal that the ecological differences found between these groups are more likely due to habitat availability in their respective regions than to differences in habitat preferences.  相似文献   

8.
Aim To investigate relative niche stability in species responses to various types of environmental pressure (biotic and abiotic) on geological time‐scales using the fossil record. Location The case study focuses on Late Ordovician articulate brachiopods of the Cincinnati Arch in eastern North America. Methods Species niches were modelled for a suite of fossil brachiopod species based on five environmental variables inferred from sedimentary parameters using GARP and Maxent . Niche stability was assessed by comparison of (1) the degree of overlap of species distribution models developed for a time‐slice and those generated by projecting niche models of the previous time‐slice onto environmental layers of a second time‐slice using GARP and Maxent , (2) Schoener’s D statistic, and (3) the similarity of the contribution of each environmental parameter within Maxent niche models between adjacent time‐slices. Results Late Ordovician brachiopod species conserved their niches with high fidelity during intervals of gradual environmental change but responded to inter‐basinal species invasions through niche evolution. Both native and invasive species exhibited similar levels of niche evolution in the invasion and post‐invasion intervals. Niche evolution was related mostly to decreased variance within the former ecological niche parameters rather than to shifts to new ecospace. Main conclusions Although the species examined exhibited morphological stasis during the study interval, high levels of niche conservatism were observed only during intervals of gradual environmental change. Rapid environmental change, notably inter‐basinal species invasions, resulted in high levels of niche evolution among the focal taxa. Both native and invasive species responded with similar levels of niche evolution during the invasion interval and subsequent environmental reorganization. The assumption of complete niche conservatism frequently employed in ecological niche modelling (ENM) analyses to forecast or hindcast species geographical distributions is more likely to be accurate for climate change studies than for invasive species analyses over geological time‐scales.  相似文献   

9.
This study focused on influences of three different growing populations of mammals foraging for bark and buds—Japanese serows (Capricornis crispus), Tohoku hares (Lepus brachyurus angustidens), and Japanese macaques (Macaca fuscata)—on a cool-temperate forest in northern Japan. To acquire the initial knowledge to facilitate ecological monitoring of the influences, we evaluated habitat uses by each species on a landscape scale by using ecological niche factor analysis (ENFA), and identified commonalities and differences among the uses by using discriminant analysis (DA). Within a 50-km2 area, we selected five 5-km transects and recorded tracks of each mammal on the snow surface along transects during the month of March in 2008 and 2009. The track data were used as the proof of species presence for entry into ENFA and DA. Marginality and specialization of species habitat use, computed by ENFA, indicated that the macaque habitat represented the most heterogeneous distribution and the lowest environmental tolerance, which was strictly limited by altitude and terrain conditions to prevent exposure to severe cold climate conditions. This refuge selection by macaques resulted in habitat segregation from serows, although it appears that both mammals prefer the same young broadleaf forests. Meanwhile, the serow was observed to be distinctly inclined to use mountainous forests and to avoid artificial environments. As a result, its habitat could be differentiated from that of the hare, as confirmed by coefficients of a discriminant factor. These findings indicate that the impact of three different mammals foraging on the native vegetation could be quite restrictive.  相似文献   

10.
Cryptic species are common in the ocean, particularly among marine invertebrates such as octopuses. Delineating cryptic species is particularly problematic in octopus taxonomy where the plasticity recorded among taxonomic characters often results in low resolution at the species level. This study investigated the morphological relationships among seven phylogenetic clades (identified using cytochrome c oxidase subunit I) of the broadly distributed Octopus vulgaris species complex and close relatives. Morphological analyses in this study were successful in delimiting O. sinensis, Brazilian Ovulgaris and O. vulgaris sensu stricto, which was congruent with the molecular findings of this study. Analyses based on male morphology were successful in distinguishing 14 of 15 total pairwise comparisons and proved to be a more reliable indicator of species‐level relationships in comparison with female morphology. The majority of characters with the greatest discriminatory power were male sexual traits. Significant morphological differences were also recorded among sampling localities of conspecifics, with phenotype showing correlation with local environmental data. The findings of this study support the hypothesis that multiple O. vulgaris‐like species are currently being incorrectly treated under a single species name, O. vulgaris. Octopuses being exported globally under the name O. vulgaris are of extremely high fisheries market value and profile. Our findings have potentially significant implications for the naming and conservation of commercially harvested members of this species complex throughout their ranges.  相似文献   

11.
Shovelnose sturgeon Scaphirhynchus platorynchus are a large‐river fish distributed throughout the Mississippi River basin, including the lower 1,533 km of the Mississippi River where riverine habitat has been and continues to be modified for navigation and is a potential site for development of instream hydrokinetic electric power generation. Information about habitat use and preference is essential to future conservation efforts. Shovelnose sturgeon have previously been found to select particular habitat types, and these selected habitats vary seasonally; although these past analyses do not consider the selected habitats in a landscape context. We used ecological niche factor analysis (ENFA) that uses distributions of telemetry locations and environmental variables to model habitat suitability in a landscape context. We recorded 333 locations of shovelnose sturgeon during July–December 2013 that included periods of relatively high and low river stages. The ENFA analysis indicated high‐suitability locations were in or near deep water during both high and low river stages. During high river stages, high‐suitability locations were near island tip habitat, deep water, and steep bottom slope and far from main channel habitat. During low stages, high‐suitability locations were in or near deep water and main channel habitat and far from secondary channel and wing dike habitats. This landscape‐scale analysis supports seasonal shifts in habitat use and provides insights that can be used to inform habitat conservation and management to benefit shovelnose sturgeon in the lower Mississippi River and possibly other large rivers.  相似文献   

12.

Prediction models are essential for the potential geographic distribution of scorpions, prevention of scorpion stings and diverse applications in conservation biology. There is limited information about habitat suitability and the factors affecting the distribution of Iranian digger scorpions. This study was undertaken to model the distribution of three types of digger scorpion in Iran, Odontobuthus doriae Thorell, Odonthubutus bidentatus Lourenco (Scorpiones: Buthidae) and Scorpio maurus Pocockin (Scorpiones: Scorpionidae), and investigate the factors affecting its distribution using the maximum entropy method. A total of 20 environmental and climate variables were used for modeling and evaluation of the ecological niche. The similarities and differences between the ecological overlap of the digger scorpions were evaluated using comparative environmental niche model (ENM Tools software). The results showed that the main factors for habitat suitability of O. doriae were soil type, mean temperature of the wettest quarter and slope. The variables for S. maurus were soil type, precipitation of the coldest quarter and slope. Annual temperature range, mean temperature of the driest quarter and land use had the greatest influence on the distribution of O. bidentatus. The ecological niches for O. doriae and O. bidentatus overlapped. The niche of these species differed from the niche of S. maurus. This approach could be helpful for the prediction of the potential distribution of three digger scorpion species and this model can be an effective for the promotion of health.

  相似文献   

13.
Considering the high biodiversity and conservation concerns of the tropical dry forest, this study aim is to predict and evaluate the potential and current distributions of twelve species of endemic birds which distribute along the western slope of Mexico. The main goal is to evaluate altogether different methods for predicting actual species distribution models (ADMs) of the twelve species including the identification of key environmental potential limiting factors. ADMs for twelve endemic Mexican birds were generated and validated by means of applying: (1) three widely used species niche modeling approaches (ENFA, Garp, and Maxent); (2) two thresholding methods, based on ROC curves and Kappa Index, for transforming continuous models to presence/absence (binary) models; (3) documented habitat–species associations for reducing species potential distribution models (PDMs); and (4) field occurrence data for validating final ADMs. Binary PDMs' predicted areas seemed overestimated, while ADMs looked drastically reduced and fragmented because of the approach taken for eliminating those predicted areas which were documented as unsuitable habitat types for individual species. Results indicated that both thresholding methods generated similar threshold values for species modeled by each of the three species distribution modeling algorithms (SDMAs). A Wilcoxon signed‐rank test, however, showed that Kappa values were generally higher than ROC curve for species modeled by ENFA and Maxent, while for Garp models there were no significant differences. Prediction success (e.g., true presences percentage) obtained from field occurrence data revealed a range of 50%–82% among the 12 species. The three modeling approaches applied enabled to test the application of two thresholding methods for transforming continuous to binary (presence/absence) models. The use of documented habitat preferences resulted in drastic reductions and fragmentation of PDMs. However, ADMs predictive success rate, tested using field species occurrence data, varied between 50 and 82%.  相似文献   

14.
15.
Aim Asian elephants, Elephas maximus, are threatened throughout their range by a combination of logging, large scale forest conversion and conflict with humans. We investigate which environmental factors, both biotic and abiotic, constrain the current distribution of elephants. A spatially explicit habitat model is constructed to find core areas for conservation and to assess current threats. Location Ulu Masen Ecosystem in the province of Nanggroe Aceh Darussalam on the island of Sumatra, Indonesia. Methods A stratified survey was conducted at 12 sites (300 transects) to establish the presence of elephants. Presence records formed the basis to model potential habitat use. Ecological niche factor analysis (ENFA) is used to describe their niche and to identify key factors shaping elephant distribution. An initial niche model was constructed to describe elephant niche structure, and a second model focused on identifying core areas only. To assess the threat of habitat encroachment, overlap between the elephants’ optimal niche and the occurrence of forest encroachment is computed. Results Elephants were recorded throughout the study area from sea level to 1600 m a.s.l. The results show that the elephant niche and consequently habitat use markedly deviates from the available environment. Elephant presence was positively related to forest cover and vegetation productivity, and elephants were largely confined to valleys. A spatially explicit model showed that elephants mainly utilize forest edges. Forest encroachment occurs throughout the elephants range and was found within 80% of the elephants’ ecological niche. Main conclusions In contrast to general opinion, elephant distribution proved to be weakly constrained by altitude, possibly because of movement routes running through mountainous areas. Elephants were often found to occupy habitat patches in and near human‐dominated areas. This pattern is believed to reflect the displacement of elephants from their former habitat.  相似文献   

16.

The Chelonian lineage has been exposed to several climate change events along its evolutionary history, but the rapid contemporary change in climate patterns has the potential to erode turtle populations. This study focuses on (1) evaluating the climatically suitable area available for 15 species of mud turtles of the genus Kinosternon, and on (2) assessing whether or not these species retain their ancestral climate niche. Occurrence data was collected for these species and, using the Maxent algorithm and WorldClim bioclimatic variables, suitable present and future climatic niche areas were modeled. In addition, we also carried out climatic niche similarity analyses between pairs of species to evaluate whether these conserve their climatic niche. Our models suggest that most species of Kinosternon will lose a high proportion of their suitable habitat in the future. Most mud turtle species seem to conserve their climatic niche, suggesting the prevalence of niche conservatism in the group. Our results indicate that several mud turtle species could be at severe risk of disappearing over the next few decades due to the loss of climatically suitable areas and of the conservation of their climatic niches.

  相似文献   

17.
Question: Which is the best model to predict the habitat distribution of Buxus balearica Lam. in southern Spain? Location: Málaga and Granada, Spain, across an area of 38 180 km2. Methods: Prediction models based on 17 environmental variables were tested. Six methods were compared: multivariate adaptive regression spline (MARS), maximum entropy approach to modelling species' distributions (Maxent), two generic algorithms based on environmental metrics dissimilarity (BIOCLIM and DOMAIN), Genetic Algorithm for Rule‐set Prediction (GARP), and supervised learning methods based on generalized linear classifiers (support vector machines, SVMs). To test the predictive power of the models we used the Kappa index. Results: Maxent most accurately predicted the habitat distribution of B. balearica, followed by MARS models. The other models tested yielded lower accuracy values. A comparison of the predictive power of the models revealed that climate variables made the highest contributions among the environmental variables studied. The variables that made the lowest contributions were the insolation models. To examine the sensitivity of the models to a reduction in the number of variables, a test showed that accuracy of over 0.90 was maintained by applying just three climatic variables (spring rainfall, mean temperature of the warmest month, and mean temperature of the coldest month). Maps derived from the algorithms of all models tested coincided well with the known distribution of the species. Conclusions: Model habitat prediction is a preliminary step towards highlighting areas of high habitat suitability of B. balearica. These data support the results of previous research, which show that MaxEnt is the best technique for modelling species distributions with small sample sizes.  相似文献   

18.
Accurate assessment of pest potential distributions is needed to identify their establishment risks that play a key role in pest management in agricultural ecosystems. We used a correlative niche modelling method (Maxent) to predict and map the spatial distributions of two important rice stem borers, Chilo suppressalis and Sesamia cretica, in paddy fields of Iran. In total, 195 presence occurrence records (101 records for C. suppressalis and 94 records for Scretica) were compiled. A set of environmental and topographic variables, with the highest effects on the species distributions and the lowest correlations among themselves, were used. The results showed that mainly the northern parts of Iran were the most suitable areas for C. suppressalis, and north, north‐east and south‐west of Iran as the most suitable areas for Scretica. Both models performed well, with an area under the receiver operating characteristic curve (AUC) of 0.983 and 0.786 for C. suppressalis and Scretica, respectively. The Maxent models showed higher accuracy for predicting the distribution of the specialist pest with the small range sizes compared to the generalist species. Assessing the importance of environmental variables, which were derived from the jackknife test, showed the precipitation as the variable with the highest contribution (66%) in explaining the spatial distribution of C. suppressalis compared to the other variables. The distribution of Scretica was influenced by a set of variables derived from both the precipitation and temperature. The Maxent predictions were useful to map the geographical distributions of the risk for both rice stem borers that is needed to develop effective management strategies.  相似文献   

19.
Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh‐level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co‐occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space.  相似文献   

20.
Several big-eyed bugs, Geocoris species, are abundant predators in many important agricultural cropping systems. Despite their apparent importance and high visibility little is known about their environmental relationships, niche overlap and species richness. To determine these ecological characteristics of 5 Geocoris species for use in conservation efforts, an extensive sampling was done in 152 localities of Iran. A richness model was developed using a maximum entropy modelling approach (Maxent) and ArcGIS software for the five species based on collection records in conjunction with eight environmental variables. Maps for habitat overlap were created for paired species using ArcGIS 10.2 and ENMTools. The species displayed different overlapping niche ranges from 1.97% to 37.25% in pair-wise comparisons. For species richness three categories (habitats dominated by 0–1, 2–3, and 4–5 species) represented 38.44%, 46.07%, and 15.49% of the modelled landscape, respectively. A direct relationship was found between humidity and the number of species present in different locations. Understanding the degree of ecological overlap between the Geocoris species, and their effective predation of aphids and mites, is critical in designing biological control methods in agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号