首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extracellular lactic acid is a major fuel for the mammalian medullary thick ascending limb (MTAL), whereas under anoxic conditions, this nephron segment generates a large amount of lactic acid, which needs to be excreted. We therefore evaluated, at both the functional and molecular levels, the possible presence of monocarboxylate transporters in basolateral (BLMVs) and luminal (LMVs) membrane vesicles isolated from rat MTALs. Imposing an inward H(+) gradient induced the transient uphill accumulation of L-[(14)C]lactate in both types of vesicles. However, whereas the pH gradient-stimulated uptake of L-[(14)C]lactate in BLMVs was inhibited by anion transport blockers such as alpha-cyano-4-hydroxycinnamate, 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), and furosemide, it was unaffected by these agents in LMVs, indicating the presence of a L-lactate/H(+) cotransporter in BLMVs, but not in LMVs. Under non-pH gradient conditions, however, the uptake of L-[(14)C]lactate in LMVs was transstimulated 100% by L-lactate, but by only 30% by D-lactate. Furthermore, this L-lactate self-exchange was markedly inhibited by alpha-cyano-4-hydroxycinnamate and DIDS and almost completely by 1 mM furosemide, findings consistent with the existence of a stereospecific carrier-mediated lactate transport system in LMVs. Using immunofluorescence confocal microscopy and immunoblotting, the monocarboxylate transporter (MCT)-2 isoform was shown to be specifically expressed on the basolateral domain of the rat MTAL, whereas the MCT1 isoform could not be detected in this nephron segment. This study thus demonstrates the presence of different monocarboxylate transporters in rat MTALs; the basolateral H(+)/L-lactate cotransporter (MCT2) and the luminal H(+)-independent organic anion exchanger are adapted to play distinct roles in the transport of monocarboxylates in MTALs.  相似文献   

2.
The rate of uptake and the distribution ratio between intra- and extracellular compartments of L- and D-lactate were studied in hepatocyte preparations from fed rats. L- and D-lactate uptake apparently depended on both passive diffusion and carrier-mediated components. The apparent Km of the high-affinity carrier for L-lactate was in the range of 1.8 mM. The reciprocal competitive inhibitions between isomers of lactate suggest that L- and D-lactate might be transported by distinct carriers. Lactate transport was inhibited by various anions; pyruvate was the most potent anion, whereas only high concentrations of ketone bodies were effective. Acidic extracellular pH enhanced lactate uptake, this effect being more pronounced for L-lactate. At low pH, L-lactate was concentrated into hepatocytes, but its affinity for the carrier appeared unchanged, suggesting the existence of a process gaining energy from the pH gradient across the cell membrane. In the hypothesis of a lactate/H+ symport, the affinity for H+ was not dependent on lactate concentration and the apparent Km for H+ corresponded to a pH of 7.34. No trans-stimulation of lactate uptake after prior loading of the cells with pyruvate or lactate was observed. The present data suggest that, at physiological concentrations, lactate uptake by the liver might be largely carrier-mediated and the rate of transport across the liver cell membrane may be of a magnitude relatively comparable to the rate of metabolism.  相似文献   

3.
The L-lactate/proton symport system of the red blood cell membrane was studied under conditions of alternative-substrate inhibition by glycolate. At constant pH of the medium glycolate caused competitive inhibition of L-lactate transport. In Lineweaver-Burk plots of 1/v against 1/[H], on the other hand, glycolate caused an uncompetitive inhibition. These observations indicate, that the monocarboxylate carrier exhibits ordered substrate binding, with the proton binding first.  相似文献   

4.
Three parallel pathways of L-lactate transport across the membrane of human red blood cells can be discriminated: (a) by nonionic diffusion; (b) via the band 3 anion exchange protein; and (c) via a specific monocarboxylate carrier system. Influx of lactate via the latter system leads to alkalinization of the medium, suggesting lactate-proton symport. Kinetic analysis of initial lactate influx via the monocarboxylate carrier indicates a symport system with ordered binding of the two ligands, in the sense that a proton binds first to the translocator, followed by lactate binding to the protonated carrier. The influence of varying trans-pH under conditions of net (zero-trans) flux with constant cis-pH indicates that the monocarboxylate translocator should be considered as a mobile carrier, with the ligand-binding sites exposed alternatively to the outside and the inside of the membrane.  相似文献   

5.
The organic mercurial p-chloromercuribenzensulfonic acid (PCMBS) reversibly increases fluxes of sodium and potassium across the human red blood cell membrane. We examined the effect of different monovalent anions on cation fluxes stimulated by PCMBS. A substantial portion of the fluxes of both cations was found to have a specific anion requirement for chloride or bromide, and was not observed when chloride was replaced by nitrate, acetate or methylsulfate. The chloride-dependent component of the cation fluxes was only observed when the cells were exposed to PCMBS concentrations of 0.5 mM or greater. Furosemide (1 mM) did not inhibit the PCMBS-stimulated cation fluxes. The observed anion specificity is directly associated with the transport process rather than PCMBS binding to the membrane. A portion of the potassium transport stimulated by PCMBS appears to involve K+-K+ exchange; however, Na+ + K+ cotransport is not stimulated by this sulfhydryl reagent.  相似文献   

6.
Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the equilibration of carbon dioxide, protons, and bicarbonate. For several acid/base-coupled membrane carriers it has been shown that the catalytic activity of CA supports transport activity, an interaction coined "transport metabolon." We have reported that CA isoform II (CAII) enhances lactate transport activity of the monocarboxylate transporter isoform I (MCT1) expressed in Xenopus oocytes, which does not require CAII catalytic activity (Becker, H. M., Fecher-Trost, C., Hirnet, D., Sültemeyer, D., and Deitmer, J. W. (2005) J. Biol. Chem. 280, 39882-39889 ). Coexpression of MCT1 with either wild type CAII or the catalytically inactive mutant CAII-V143Y similarly enhanced MCT1 activity, although injection of CAI or coexpression of an N-terminal mutant of CAII had no effect on MCT1 transport activity, demonstrating a specific, nonenzymatic action of CAII on lactate transport via MCT1. If the H(+) gradient was set to dominate the rate of lactate transport by applying low concentrations of lactate at a high H(+) concentration, the effect of CAII was largest. We tested the hypothesis of whether CAII helps to shuttle H(+) along the inner face of the cell membrane by measuring the pH change with fluorescent dye in different areas of interest during focal lactate application. Intracellular pH shifts decayed from the focus of lactate application to more distant sites much less when CAII had been injected. We present a hypothetical model in which the effective movement of H(+) into the bulk cytosol is increased by CAII, thus slowing the dissipation of the H(+) gradient across the cell membrane, which drives MCT1 activity.  相似文献   

7.
Plasma membrane vesicles from rat liver transported L-lactate into the inner vesicular space. Kinetic analysis of L-lactate uptake gave a Km value of approx. 2.9 mM. Selective inhibition was found in a similar pattern to that described for the hepatic lactate carrier. L-Lactate transport was enhanced when a pH gradient was created across the plasma membrane. Vesicles obtained from fasted rats showed a higher uptake of L-lactate than those from fed rats, when incubated with physiological concentrations of L-lactate.  相似文献   

8.
Effect of PCMBS on water transfer across biological membranes   总被引:4,自引:0,他引:4  
P-chloromercuriphenylsulfonate, PCMBS, and 5, 5′ dithiobis-(2-nitrobenzoic acid), DTNB at a concentration of 1 mM are found to inhibit the rate of water transport across human red cell membrane. In addition PCMBS inhibits the rates of transport of small hydrophilic but not hydrophobic nonelectrolytes. Other sulfhydryl reagents such as N-ethylmaleimide and iodoacetamide have no significant effect on the rate of water transfer in these cells. The results suggest that there are at least two populations of membrane bound SH-groups which differ in their topical location which participate in the control of water transfer. One is located closer to the outer surface of the membrane, and thus is readily accessible to PCMBS while the other component is probably located in the membrane interior. These two populations can be dissociated by pH. The effect of PCMBS on water transfer can be greatly influenced by pH and temperature. The main effect of temperature and pH is on the permeability of the membrane to the drug. The same concentration of PCMBS is also found to inhibit to a lesser degree water transfer across other biological membranes.  相似文献   

9.
L-lactate transport in Ehrlich ascites-tumour cells.   总被引:10,自引:0,他引:10       下载免费PDF全文
Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids.  相似文献   

10.
The pathway by which L-lactate (Lac) crosses the plasma membrane of isolated human neutrophils was investigated. The influx of [14C]Lac from a 2 mM Lac, 145 mM Cl-, 5.6 mM glucose medium was approximately 1.5 meq/liter of cell water.min and was sensitive to the organomercurial agent mersalyl (apparent Ki approximately 20 microM), to alpha-cyano-4-hydroxycinnamate (CHC), the classical inhibitor of monocarboxylate transport in mitochondria, and to UK-5099 (apparent Ki approximately 40 microM), a more potent analogue of CHC. Transport was also strongly blocked (greater than 80%) by 1 mM of either 3,5-diiodosalicylic acid, MK-473 (an indanyloxyacetate derivative), or diphenyl-amine-2-carboxylate, and by 0.4 mM pentachlorophenol, but not by 1 mM ethacrynic acid, furosemide, or the disulfonic stilbenes SITS or H2DIDS. One-way [14C]Lac efflux from steady-state cells amounted to approximately 6 meq/liter.min and was likewise affected by the agents listed above. Influx, which was membrane potential insensitive and Na+ independent, displayed a strong pH dependence: extracellular acidification enhanced uptake while alkalinization inhibited the process (pK' approximately 5.7 at 2 mM external Lac). The rate of [14C]Lac influx was a saturable function of external Lac, the Km being approximately 7 mM. Steady-state cells exhibited an intracellular Lac content of approximately 5 mM and secreted lactic acid into the bathing medium a a rate of approximately 4 meq/liter.min. Secretion was completely suppressed by 1 mM mersalyl which inactivates the carrier, leading to an internal accumulation of Lac. That the Lac carrier truly mediates an H+ + Lac- cotransport (or formally equivalent Lac-/OH- exchange) was documented by pH-stat techniques wherein an alkalinization of poorly buffered medium could be detected upon the addition of Lac; these pH changes were sensitive to mersalyl. Thus, the Lac carrier of neutrophils possesses several features in common with other monocarboxylate transport systems in erythrocytes and epithelia.  相似文献   

11.
Ion metabolism in malaria-infected erythrocytes   总被引:2,自引:0,他引:2  
K Tanabe 《Blood cells》1990,16(2-3):437-449
Malaria parasites of the genus Plasmodium spend much of their asexual life cycle inside the erythrocytes of their vertebrate hosts. Parasites presumably have to exploit metabolic and transport mechanisms to adapt themselves to the host erythrocyte's physicochemical environment. This review surveys the metabolism and transport of Ca2+, alkali cations, and H+ in malaria-infected erythrocytes. The Ca2+ content of Plasmodium-infected erythrocytes increases as the parasite matures. An increase in the influx of extracellular Ca2+ into infected erythrocytes is evident at later stages of parasite development. In infected erythrocytes, Ca2+ is almost exclusively localized in the parasite compartment and changes but little in the cytosol of the host cell. The importance of Ca2+ in supporting the growth of intraerythrocytic parasites and the invasion of erythrocytes by the merozoite has been assessed by depletion of extracellular Ca2+ with chelators, or by disturbance of the metabolism and transport of Ca2+ with a variety of Ca2+ modulators. Membranes of malaria-infected erythrocytes change their permeability to alkali cations. Hence, levels of K+ decrease and levels of Na+ increase in the cytosol of infected erythrocytes. Intraerythrocytic parasites maintain a high K+, low Na+ state, suggesting a mechanism for transporting K+ inward and Na+ outward against concentration gradients of the alkali cations across the parasite plasma membrane and/or the parasitophorous vacuole membrane (PVM). Concomitantly, P. falciparum can grow in Na(+)-enriched human erythrocytes. Experimental evidence suggests that Plasmodium possesses in its plasma membrane a proton pump which is very sensitive to orthovanadate, carbonylcyanide m-chlorophenylhydrazone, a protonophore, and dicyclohexylcarbodiimide, an inhibitor of H(+)-ATPase, but is only slightly sensitive to inhibitors of bacterial and mitochondrial respiration, such as antimycin A, CN-, or N3-, and ouabain, a Na+, K(+)-ATPase inhibitor. By operating this proton pump, parasites extrude H+ and thus generate an electrochemical gradient of protons (an internal negative membrane potential and a concentration gradient of protons) across the parasite plasma membrane. The electrochemical gradient apparently drives inward movement of Ca2+ and, possibly, glucose from the cytosol of infected erythrocytes. Little is known about the transport properties of the PVM. Recent sequence studies suggest that Plasmodium contains a cation-transporting ATPase which exhibits a high homology to the Ca2(+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We investigated the existence of an endogenous system for lactate transport in Xenopus laevis oocytes. (36)Cl-uptake studies excluded the involvement of a DIDS-sensitive anion antiporter as a possible pathway for lactate movement. L-[(14)C]lactate uptake was unaffected by superimposed pH gradients, stimulated by the presence of Na(+) in the incubating solution, and severely reduced by the monocarboxylate transporter inhibitor p-chloromercuribenzenesulphonate (pCMBS). Transport exhibited a broad cation specificity and was cis inhibited by other monocarboxylates, mostly by pyruvate. These results suggest that lactate uptake is mediated mainly by a transporter and that the preferred anion is pyruvate. [(14)C]pyruvate uptake exhibited the same pattern of functional properties evidenced for L-lactate. Kinetic parameters were calculated for both monocarboxylates, and a higher affinity for pyruvate was revealed. Various inhibitors of monocarboxylate transporters reduced significantly pyruvate uptake. These studies demonstrate that Xenopus laevis oocytes possess a monocarboxylate transport system that shares some functional features with the members of the mammalian monocarboxylate cotransporters family, but, in the meanwhile, exhibits some particular properties, mainly concerning cation specificity.  相似文献   

13.
Calcium (Ca2+) is indispensable for normal development of the various stages of the asexual erythrocytic cycle of malaria parasites. However, the mechanisms involved in Ca2+ uptake, compartmentalization and cellular regulation are poorly understood. To clarify some of these issues, we have measured total, exchangeable, and free Ca2+ in normal red cells (RBCs) and Plasmodium falciparum (FCR-3)-infected cells (IRBCs) as a function of parasite development. All three forms of Ca2+ were found to be substantially higher in IRBCs than in RBCs, and to increase with parasite maturation up to the trophozoite stage and decline thereafter. Exchangeable and free [Ca2+] in host cell and parasite compartments were determined by selectively lysing IRBCs with Sendai virus, and estimating these parameters in the lysate (host cytosol) and the pellet (parasite cytosol). Levels of both exchangeable and free [Ca2+] were found to be higher in host cytosol than in parasite cytosol. The Ca2+ gradient across the parasite membrane can be maintained by the pH gradient across this membrane by means of a Ca2+/H+ antiporter. Host cytosol free [Ca2+] reached levels known to produce structural, physiological and biochemical changes in RBCs, and could account for similar features normally seen in malaria-infected red cells. Uptake of Ca2+ into IRBCs was nonsaturable and substantially faster than the saturable Ca2+ uptake into RBCs. The rate of Ca2+ uptake across the parasite membrane was even faster suggesting that the rate-limiting step in uptake into intact IRBCs is the translocation of Ca2+ across the host cell membrane.  相似文献   

14.
The mechanisms of lactate and pyruvate transport across the plasma membrane of rat skeletal muscle under various pH and ionic conditions were studied in skeletal muscle sarcolemmal (SL) membrane vesicles purified from 22 female Sprague-Dawley rats. Transport by SL vesicles was measured as uptake of L(+)-[U-14C] lactate and [U-14C] pyruvate. Lactate (La-) transport is pH-sensitive; stimulations to fivefold overshoot above equilibrium values were observed both directly by a proton gradient directed inward, and indirectly by a monensin- or nigericin-stimulated exchange of Na+ or K+ for H+ across the SL. Isotopic pyruvate could utilize the transporter, and demonstrated pH gradient-stimulated overshoot and cis-inhibition characteristics similar to those of lactate. Overshoot kinetics were also demonstrated by pH gradient formed by manipulation of external media at pH 5.9, 6.6, and 7.4 and intravesicular media at 6.6, 7.4, and 8.0, respectively. Carbonyl cyanide m-chlorophenylhydrazone, an H+ ionophore, was used as a "pH clamp" to return all stimulated uptake courses back to equilibrium values. Lactate uptake was depressed when internal pH was lower than external pH. These data strongly suggest that La- and H+ are either cotransported by the carrier, or transported as the undissociated HLa, and can account for the majority of the lactate uptake at pH 7.4. The mechanism does not require cotransport of either K+ or Na+. However, an inwardly directed Na+ gradient without ionophore in the absence of a pH gradient doubled La- transport; treatment with amiloride, an inhibitor of the Na+/H+ exchanger, abolished this stimulation, suggesting that this transporter may be an important coregulator of intracellular pH, and could disrupt 1:1 H+ and La- efflux stoichiometry in vivo. We conclude that the majority of La- crosses the skeletal muscle SL by a specific carrier-mediated process that is saturable at high La- concentrations, but flux is passively augmented at low intracellular pH by undissociated lactic acid. In addition, a Na+/H+ exchange mechanism was confirmed in skeletal muscle SL, does affect both lactate and proton flux, and is potentially an important coregulator of intracellular pH and thus, cellular metabolism.  相似文献   

15.
The asexual development of malaria parasites inside the erythrocyte is accompanied by changes in the composition, structure, and function of the host cell membrane and cytoplasm. The parasite exports a membrane network into the host cytoplasm and several proteins that are inserted into the erythrocyte membrane, although none of these proteins has been shown to have enzymatic activity. We report here that a functional malaria parasite-encoded vacuolar (V)-H(+)-ATPase is exported to the erythrocyte and localized in membranous structures and in the plasma membrane of the infected erythrocyte. This localization was determined by separation of parasite and erythrocyte membranes and determination of enzyme marker activities and by immunofluorescence microscopy assays using antibodies against the B subunit of the malarial V-H(+)-ATPase and erythrocyte (spectrins) and parasite (merozoite surface protein 1) markers. Our results suggest that this pump has a role in the maintenance of the intracellular pH (pH(i)) of the infected erythrocyte. Our results also indicate that although the pH(i) maintained by the V-H(+)-ATPase is important for maximum uptake of small metabolites at equilibrium, it does not appear to affect transport across the erythrocyte membrane and is, therefore, not involved in the previously described phenomenon of increased permeability of infected erythrocytes that is sensitive to chloride channel inhibitors (new permeation pathway). This constitutes the first report of the presence of a functional enzyme of parasite origin in the plasma membrane of its host.  相似文献   

16.
We have characterised L-lactate transport in rat adipocytes and determined whether these cells express a carrier belonging to the monocarboxylate transporter family. L-Lactate was taken up by adipocytes in a time-dependent, non-saturable manner and was inhibited (by approximately 90%) by alpha-cyano-4-hydroxycinnamate. Lactate transport was stimulated by 3.7-fold upon lowering extracellular pH from 7.5 to 6.5 suggesting the presence of a lactate/proton-cotransporter. Antibodies against mono carboxylate transporter 1 (MCT1) reacted positively with plasma membranes (PM), but not with intracellular membranes, prepared from adipocytes. MCTI expression was down-regulated in PM of adipocytes from diabetic rats, which also displayed a corresponding loss (approximately 64%) in their capacity to transport lactate. The data support a role for MCT1 in lactate transport and suggest that changes in MCT1 expression are likely to have important implications for adipocyte lactate metabolism.  相似文献   

17.
Esters of N-hydroxysulfosuccinimide strongly inhibit L-(+)-lactate transport in rabbit erythrocytes, probably by acylating amino groups on the transport protein. Lactate transport studies using bis(sulfosuccinimido) suberate (BS3), bis(sulfosuccinimido) adipate (BS2A), bis(sulfosuccinimido) dithiobis(propionate), and a variety of monocarboxylate esters suggest that an exofacial amino group of the lactate transport protein is essential for lactate transport. Also, reductive methylation studies show that even when positive charge is preserved in modified amino groups, the transport is strongly inhibited. At pH less than 6, band 3 mediated inorganic anion transport is enhanced in BS3-treated cells, while at pH greater than 6, it is inhibited. BS3-induced inhibition of L-(+)-lactate transport does not have this pH dependence. BS3 reduces the labeling of a 40-50-kDa membrane polypeptide (band R) by tritiated 4,4'-diisothiocyanato-2,2-dihydrostilbenedisulfonate ([3H]H2DIDS) and by tritiated bis(sulfosuccinimido) adipate ([3H]BS2A). Tritiated sulfosuccinimido acetate (S2[3H]acetate) also labels band R, over a range of concentrations where lactate transport is inhibited in a dose-dependent manner by S2 acetate. BS3 is a known impermeant protein cross-linker. S2 acetate permeates rabbit red cell membranes by an H2DIDS-inhibitable mechanism. BS3 cross-links the proteolytic fragments of rabbit band 3 produced by extracellular chymotrypsin. These labeling experiments support an association between band R and specific monocarboxylate transport.  相似文献   

18.
Proton-coupled lactate transport across the basolateral membrane of rat jejunal enterocyte was studied using well purified membrane vesicles. L-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP and by pCMBS; unlabelled L-lactate causes a strong inhibition, whilst furosemide is uneffective. The H+ gradient-dependent stimulation of L-lactate uptake is significantly inhibited also by SCN: this finding could explain results recently reported in the literature in which H+-lactate symport was not evidenced in basolateral membranes from rat jejunum.  相似文献   

19.
The kinetics and specificity of L-lactate transport into cardiac muscle were studied during a single transit through the isolated perfused rabbit heart using a rapid (15 s) paired-tracer dilution technique. Kinetic experiments revealed that lactate influx was highly stereospecific and saturable with an apparent Kt = 19 +/- 6 mM and a Vmax = 8.4 +/- 1.5 mumol/min per g (mean +/- S.E., n = 14 hearts). At high perfusate concentrations (10 mM), the inhibitors alpha-cyano-4-hydroxycinnamate (Ki = 7.3 mM), pyruvate (Ki = 6.5 mM), acetate (Ki = 19.4 mM) and chloroacetate (Ki = 28 mM) reduced L-lactate influx, and Ki values were estimated assuming a purely competitive interaction of the inhibitors with the monocarboxylate carrier. The monocarboxylic acids [14C]pyruvate and [3H]acetate were themselves transported, and sarcolemmal uptakes of respectively 38 +/- 1% and 70 +/- 8% were measured relative to D-mannitol. Perfusion of hearts for 10-30 min with 0.15 or 1.5 microM glucagon increased myocardial lactate production and simultaneously inhibited tracer uptake of lactate, pyruvate and acetate. It is concluded that a stereospecific lactate transporter exhibiting an affinity for other substituted monocarboxylic acids is operative in the sarcolemmal plasma membrane of the rabbit myocardium.  相似文献   

20.
The electrogenic sodium bicarbonate cotransporter (NBCe1) is expressed in many epithelial cells and, in the brain, in glial cells. Little is known about the physiological significance of the NBCe1 for proton homeostasis and for other acid/base-coupled transporters in these cells. We have measured the voltage-dependent transport activity of an NBC from human kidney, type hkNBCe1, expressed in oocytes of the frog Xenopus laevis, by recording membrane current and the changes in intracellular pH and sodium at different membrane potentials between -20 and -100 mV. The apparent intracellular buffer capacity was increased and became dependent upon membrane voltage when the NBCe1 was expressed; the measured buffer capacity increased by up to 7 mm/10 mV of membrane depolarization. Lactate transport by the electroneutral monocarboxylate transporter became enhanced and dependent upon membrane potential, when the monocarboxylate transporter (isoform 1) was co-expressed with NBCe1 in oocytes. Our results indicate that the electrogenic NBCe1 renders the cell membrane potential an effective regulator of intracellular H(+) buffering and acid/base-coupled metabolite transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号