首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The AtNRT1.1 (CHL1) gene of Arabidopsis encodes a dual-affinity nitrate transporter and contributes to both low and high affinity nitrate uptake. Localization studies have shown that CHL1 expression is preferentially targeted to nascent organs and growing regions of roots and shoots in Arabidopsis. In roots, CHL1 expression is concentrated in the tips of primary and lateral roots and is activated during lateral root initiation. In shoots, strong CHL1 expression is found in young leaves and developing flower buds. These findings suggest that CHL1 expression might be regulated by a growth signal such as the phytohormone auxin. To test this, auxin regulation of CHL1 was examined. Using transgenic Arabidopsis plants containing CHL1::GUS/GFP DNA constructs, it was found that treatment with exogenous auxin or introduction of the auxin overproducing mutations (yucca and rooty) resulted in a strong increase in CHL1::GUS/GFP signals in roots and leaves. When mature roots were treated with auxin to induce lateral root formation, CHL1::GFP signals were dramatically enhanced in dividing pericycle cells and throughout primordia development. RNA blot analysis showed that CHL1 mRNA levels in whole seedlings increase within 30 min of auxin treatment. The distribution of CHL1 expression in Arabidopsis roots and shoots was found to be similar to that of DR5::GUS, a synthetic, auxin-responsive gene. These results indicate that auxin acts as an important signal regulating CHL1 expression and contributes to the targeting of CHL1 expression to nascent organs and root tips in Arabidopsis.  相似文献   

2.
The Arabidopsis CHL1 (AtNRT1) gene confers sensitivity to the herbicide chlorate and encodes a nitrate-regulated nitrate transporter. However, how CHL1 participates in nitrate uptake in plants is not yet clear. In this study, we examined the in vivo function of CHL1 with in vivo uptake measurements and in situ hybridization experiments. Under most conditions tested, the amount of nitrate uptake by a chl1 deletion mutant was found to be significantly less than that of the wild type. This uptake deficiency was reversed when a CHL1 cDNA clone driven by the cauliflower mosaic virus 35S promoter was expressed in transgenic chl1 plants. Furthermore, tissue-specific expression patterns showed that near the root tip, CHL1 mRNA is found primarily in the epidermis, but further from the root tip, the mRNA is found in the cortex or endodermis. These results are consistent with the involvement of CHL1 in nitrate uptake at different stages of root cell development. A functional analysis in Xenopus oocytes indicated that CHL1 is a low-affinity nitrate transporter with a K(m) value of approximately 8.5 mM for nitrate. This finding is consistent with the chlorate resistance phenotype of chl1 mutants. However, these results do not fit the current model of a single, constitutive component for the low-affinity uptake system. To reconcile this discrepancy and the complex uptake behavior observed, we propose a "two-gene" model for the low-affinity nitrate uptake system of Arabidopsis.  相似文献   

3.
The movement of guard cells in stomatal complexes controls water loss and CO(2) uptake in plants. Examination of the dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) revealed that it is expressed and functions in Arabidopsis guard cells. CHL1 promoter-beta-glucuronidase and CHL1 promoter-green fluorescent protein constructs showed strong expression in guard cells, and immunolocalization experiments with anti-CHL1 antibody confirmed these results. To assess CHL1 function, chl1 mutant plants grown in the presence of nitrate were examined. Compared with wild-type plants, chl1 mutants had reduced stomatal opening and reduced transpiration rates in the light or when deprived of CO(2) in the dark. These effects result in enhanced drought tolerance in chl1 mutants. At the cellular level, chl1 mutants showed reduced nitrate accumulation in guard cells during stomatal opening and failed to show nitrate-induced depolarization of guard cells. In wild-type guard cells, nitrate induced depolarization, and nitrate concentrations increased threefold during stomatal opening. These results identify an anion transporter that functions in stomatal opening and demonstrate that CHL1 supports stomatal function in the presence of nitrate.  相似文献   

4.
N C Huang  K H Liu  H J Lo    Y F Tsay 《The Plant cell》1999,11(8):1381-1392
The Arabidopsis CHL1 (AtNRT1) gene encodes an inducible component of low-affinity nitrate uptake, which necessitates a "two-component" model to account for the constitutive low-affinity uptake observed in physiological studies. Here, we report the cloning and characterization of a CHL1 homolog, AtNRT1:2 (originally named NTL1), with data to indicate that this gene encodes a constitutive component of low-affinity nitrate uptake. Transgenic plants expressing antisense AtNRT1:2 exhibited reduced nitrate-induced membrane depolarization and nitrate uptake activities in assays with 10 mM nitrate. Furthermore, transgenic plants expressing antisense AtNRT1:2 in the chl1-5 background exhibited an enhanced resistance to chlorate (7 mM as opposed to 2 mM for the chl1-5 mutant). Kinetic analysis of AtNRT1:2-injected Xenopus oocytes yielded a K(m) for nitrate of approximately 5.9 mM. In contrast to CHL1, AtNRT1:2 was constitutively expressed before and after nitrate exposure (it was repressed transiently only when the level of CHL1 mRNA started to increase significantly), and its mRNA was found primarily in root hairs and the epidermis in both young (root tips) and mature regions of roots. We conclude that low-affinity systems of nitrate uptake, like high-affinity systems, are composed of inducible and constitutive components and that with their distinct functions, they are part of an elaborate nitrate uptake network in Arabidopsis.  相似文献   

5.
Yang X  Sun F  Xiong A  Wang F  Kong M  Wang Q  Wang J  Dai W  Xia X  Hou X 《Molecular biology reports》2012,39(8):7997-8006
A nitrate transporter, BcNRT1, was isolated from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) cultivar 'Suzhouqing'. The full-length cDNA was obtained using the rapid amplification of cDNA ends technique and contains an open reading frame of 1,770?bp that predicts a protein of 589 acid residues that possesses 12 putative transmembrane domains. Using the GUS marker gene driven by the BcNRT1 promoter, we found BcNRT1 expression to be concentrated in primary and lateral root tips and in shoots of transgenic Arabidopsis plants. The YFP fused to BcNRT1 and transformed into cabbage protoplasts indicated that BcNRT1 was localized to the plasma membrane. The expression of BcNRT1 in roots was induced by exposure to 25?mM nitrate, and the BcNRT1 cRNA heterologously expressed in Xenopus laevis oocytes showed nitrate conductance when nitrate was included in the medium. Moreover, mutant chl1-5 plants harboring 35S::BcNRT1 showed sensitivity to chlorate treatment and exhibited restored nitrate uptake. In conclusion, the results indicate that BcNRT1 functions as a low affinity nitrate transporter in non-heading Chinese cabbage.  相似文献   

6.
Abstract: Hoffmannseggia glauca is a perennial weed that has tubers and root-borne buds. Some authors only consider root tubers without mentioning root-borne buds, while others consider that more anatomic studies become necessary to determine the origin of these structures and to interpret their behaviour. The objectives are: to study the growth form of the plant in order to analyze the ontogeny of its propagation organs, and to study its shoot and root anatomical characters that affect water conductivity. Hoffmannseggia glauca was collected in Argentina. Development of its shoot and root systems was observed. Shoots and roots were processed to obtain histological slides. Macerations were prepared to study vessel members. Primary and lateral roots originate buds that develop shoots at the end of the first year. In winter, aerial parts die and only latent buds at soil surface level and subterranean organs remain. In the following spring, they develop innovation shoots. Roots show localized swellings (tuberous roots), due to a pronounced increase of ray thickness and parenchymatous proliferation in the root center. Root vessel members are wider than those of aerial and subterranean shoots. Early development of an extensive root system, presence of root borne buds, anatomic and physiological specialization of innovation shoots, capability of parenchymatous rays to originate buds and tuberous roots, and high water transport efficiency in subterranean organs lead Hoffmannseggia glauca to display higher colonization potential than other species.  相似文献   

7.
K H Liu  C Y Huang    Y F Tsay 《The Plant cell》1999,11(5):865-874
Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affinity concentration) were only 18 to 30% of those of wild-type plants. In these mutants, both the inducible phase and the constitutive phase of high-affinity nitrate uptake activities were reduced, with the inducible phase being severely reduced. Expressing a CHL1 cDNA driven by the cauliflower mosaic virus 35S promoter in a transgenic chl1 plant effectively recovered the defect in high-affinity uptake for the constitutive phase but not for the induced phase, which is consistent with the constitutive level of CHL1 expression in the transgenic plant. Kinetic analysis of nitrate uptake by CHL1-injected Xenopus oocytes displayed a biphasic pattern with a Michaelis-Menten Km value of approximately 50 microM for the high-affinity phase and approximately 4 mM for the low-affinity phase. These results indicate that in addition to being a low-affinity nitrate transporter, as previously recognized, CHL1 is also involved in both the inducible and constitutive phases of high-affinity nitrate uptake in Arabidopsis.  相似文献   

8.
Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length. Relative to shoot dry weight (DW), primary root length decreased with increasing nitrate availability, while it increased with increasing phosphate supply. Lateral root density remained constant across a range of nitrate supplies, but decreased with increasing phosphate supply. In contrast, lateral root elongation was suppressed both by high nitrate and high phosphate supplies. Local supplies of high nitrate or phosphate in a patch also had different effects. Primary root growth was not affected by a high nitrate patch, but growth through a high phosphate patch reduced primary root growth after the root left the patch. A high nitrate patch induced an increase in lateral root density in the patch, whereas lateral root density was unaffected by a high phosphate patch. However, both phosphate- and nitrate-rich patches induced lateral root elongation in the patch and suppressed it outside the patch. This co-ordinated response of lateral roots also occurs in soil-grown plants exposed to a nutrient-rich patch. The auxin-resistant mutants axrl, axr4 and aux1 all showed the wild-type lateral root elongation responses to a nitrate-rich patch, suggesting that auxin is not required for this response.  相似文献   

9.
 The regeneration potential of excised aspen (Populus tremula L.) roots cultivated in liquid medium, as affected by plant growth regulators and by the position of the isolated root explant on the main root, was investigated. The effect of various levels of benzyladenine (BA) and thidiazuron (TDZ) on bud regeneration in root explants was studied. TDZ in the medium had a marked effect on bud development as compared with BA, inducing a tenfold increase in the number of buds regenerated from various root explants. TDZ enhanced both root and root-borne shoot biomass production but reduced further shoot development and elongation. The position of the isolated root sections on the main root affected regeneration, the proximal sections further away from the root tip producing the highest number of buds per explant in both BA and TDZ treatments. Buds regenerated in close proximity to the site of lateral roots in BA-treated roots, while in TDZ-treated root sections, the buds formed all over the root regardless of the presence of lateral roots. The buds developed from inner cortical and sub-epidermal cell layers, disrupting the epidermis and the inner layers. Root biomass production and growth was greatly enhanced in well-aerated bioreactor culture in the presence of 4.5×10–2 μM TDZ. A high number of the root-borne shoots could be rooted and converted to plantlets. However, while shoots regenerated in a medium with BA rooted well in a growth regulator-free medium, shoots formed in a medium with TDZ required auxin for rooting. Roots cultured in the presence of ancymidol, a gibberellin biosynthesis inhibitor, regenerated non-hyperhydric bud clusters and hyperhydric shoots. These were separated mechanically, subcultured to growth and rooting medium and transplanted ex vitro resulting in phenotypically true-to-type plantlets. The potential of liquid cultures for aspen shoot biomass production from roots is discussed. Received: 24 January 2000 / Revision received: 6 March 2000 / Accepted: 7 March 2000  相似文献   

10.
Phosphate mobilization into the plant is a complex process requiring numerous transporters for absorption and translocation of this major nutrient. In the genome of Arabidopsis thaliana, nine closely related high affinity phosphate transporters have been identified but their specific roles remain unclear. Here we report the molecular, histological and physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hybridization, Pht1;4 was found mainly expressed in inorganic phosphate (Pi) limiting medium in roots, primarily in the epidermis, the cortex and the root cap. In addition to this, expression was also observed at the lateral root branch points on the primary root and in the stele of lateral roots, suggesting a role of Pht1;4 in phosphate absorption and translocation from the growth medium to the different parts of the plant. Pi-starved pht1;4 plantlets exhibited a strong reduction of phosphate uptake capacity (40). This phenotype appears only related to the pht1;4 mutation as there were no obvious changes in the expression of other Pht1 family members in the mutants background. However, after 10 days of growth on phosphate deficient or sufficient medium, the Pi content in the mutants was not significantly different from that of the corresponding wild type controls. Furthermore, the mutants did not display any obvious growth defects or visible phenotypes when grown on a low phosphate containing medium. The work described here offers a first step in the complex genetic dissection of the phosphate transport system in planta.  相似文献   

11.
The CHL1 gene is considered to encode a low-affinity transport system (LATS) for NO3- in Arabidopsis thaliana (Y.-F. Tsay, J.I. Schroeder, K.A. Feldmann, N.M. Crawford [1993] Cell 72: 705-713). However, the anticipated reduced NO3- uptake by the LATS associated with loss of CHL1 gene activity in chl1-5 deletion mutants was evident only when plants were grown on NH4NO3. When KNO3 was the sole N source, NO3- accumulation and short-term tracer influx (using 13NO3- and 15NO3-) in leaves and roots of wild-type and mutant plants were essentially identical. Nevertheless, root uptake of 36CIO3- by the LATS and CIO3- accumulation in roots and shoots of mutant plants were significantly lower than in wild-type plants when grown on KNO3. One explanation for these results is that a second LATS is able to compensate for the chl1-5 deficiency in KNO3-grown plants. Growth on NH4NO3 may down-regulate the second LATS enough that the anticipated difference in NO3- uptake becomes apparent.  相似文献   

12.
13.
The Medicago truncatula LATD/NIP gene is essential for the development of lateral and primary root and nitrogen-fixing nodule meristems as well as for rhizobial invasion of nodules. LATD/NIP encodes a member of the NRT1(PTR1) nitrate and di-and tri-peptide transporter family, suggesting that its function is to transport one of these or another compound(s). Because latd/nip mutants can have their lateral and primary root defects rescued by ABA, ABA is a potential substrate for transport. LATD/NIP expression in the root meristem was demonstrated to be regulated by auxin, cytokinin and abscisic acid, but not by nitrate. LATD/NIP''s potential function and its role in coordinating root architecture and nodule formation are discussed.Key words: nodule development, lateral root development, root architecture, symbiotic nitrogen fixation, Medicago truncatula, NRT1(PTR) gene familyUnlike most other plants, legumes form two kinds of lateral root organs: lateral roots and nitrogen-fixing root nodules that form in conjunction with compatible symbiotic rhizobium bacteria. Although the morphology and function of these two root organs is distinct, both require the function of the LATD/NIP gene, indicating shared genetic components for these two developmental processes and providing support for a model in which legume nodules evolved from a lateral root blueprint. Both lateral roots and nodules initiate in previously differentiated root cells in response to environmental and developmental cues mediated by hormones. Interestingly, regulation of nodules and lateral roots by hormones is often opposite, allowing formation of one organ or another depending on the conditions.  相似文献   

14.
Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and β-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to the shoot phloem. The spatiotemporal expression pattern of NRT2.4 in roots is complementary with that of the major high-affinity nitrate transporter NTR2.1. Functional analysis in Xenopus laevis oocytes and in planta showed that NRT2.4 is a nitrate transporter functioning in the high-affinity range. In N-starved nrt2.4 mutants, nitrate uptake under low external supply and nitrate content in shoot phloem exudates was decreased. In the absence of NRT2.1 and NRT2.2, loss of function of NRT2.4 (triple mutants) has an impact on biomass production under low nitrate supply. Together, our results demonstrate that NRT2.4 is a nitrate transporter that has a role in both roots and shoots under N starvation.  相似文献   

15.
Plant root development is highly responsive both to changes in nitrate availability and beneficial microorganisms in the rhizosphere. We previously showed that Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacteria strain isolated from rapeseed roots, alleviates the inhibition exerted by high nitrate supply on lateral root growth. Since soil-borne bacteria can produce IAA and since this plant hormone may be implicated in the high nitrate-dependent control of lateral root development, we investigated its role in the root development response of Arabidopsis thaliana to STM196. Inoculation with STM196 resulted in a 50% increase of lateral root growth in Arabidopsis wild-type seedlings. This effect was completely abolished in aux1 and axr1 mutants, altered in IAA transport and signaling, respectively, indicating that these pathways are required. The STM196 strain, however, appeared to be a very low IAA producer when compared with the high-IAA-producing Azospirillum brasilense sp245 strain and its low-IAA-producing ipdc mutant. Consistent with the hypothesis that STM196 does not release significant amounts of IAA to the host roots, inoculation with this strain failed to increase root IAA content. Inoculation with STM196 led to increased expression levels of several IAA biosynthesis genes in shoots, increased Trp concentration in shoots, and increased auxin-dependent GUS staining in the root apices of DR5::GUS transgenic plants. All together, our results suggest that STM196 inoculation triggers changes in IAA distribution and homeostasis independently from IAA release by the bacteria.  相似文献   

16.
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions.  相似文献   

17.
Costes E 《Annals of botany》2003,92(4):581-588
An investigation was made of the number of preformed organs in winter buds of 3-year-old reiterated complexes of the 'Granny Smith' cultivar. Winter bud content was studied with respect to bud position: terminal buds were compared on both long shoots and spurs according to branching order and shoot age, while axillary buds were compared between three zones (distal, median and proximal) along 1-year-old annual shoots in order 1. The percentage of winter buds that differentiated into inflorescences was determined and the flowers in each bud were counted for each bud category. The other organ categories considered were scales and leaf primordia. The results confirmed that a certain number of organs must be initiated before floral differentiation occurred. The minimum limit was estimated at about 15 organs on average, including scales. Total number of lateral organs formed was shown to vary with both bud position and meristem age, increasing from newly formed meristems to 1- and 2-year-old meristems on different shoot types. These differences in bud organogenesis depending on bud position, were consistent with the morphogenetic gradients observed in apple tree architecture. Axillary buds did not contain more than 15 organs on average and this low organogenetic activity of the meristems was related to a low number of flowers per bud. In contrast, the other bud categories contained more than 15 differentiated organs on average and a trade-off was observed between leaf and flower primordia. The ratio between the number of leaf and flower primordia per bud varied with shoot type. When the terminal buds on long shoots and spurs were compared, those on long shoots showed more flowers and a higher ratio of leaf to flower primordia.  相似文献   

18.
The cell layers of the Arabidopsis primary root are arranged in a simple radial pattern. The outermost layer is the lateral root cap and lies outside the epidermis that surrounds the ground tissue. The files of epidermal and lateral root cap cells converge on a ring of initials (lateral root cap/epidermis initial) from which the epidermal and lateral root cap tissues of the seedling are derived, once root growth is initiated after germination. Each initial gives rise to a clone of epidermal cells and a clone of lateral root cap cells. These initial divisions in the epidermal/lateral root cap initial are defective in tornado1 (trn1) and trn2 plants indicating a requirement for TRN1 and TRN2 for initial cell function. Furthermore, lateral root cap cells develop in the epidermal position in trn1 and trn2 roots indicating that TRN1 and TRN2 are required for the maintenance of the radial pattern of cell specification in the root. The death of these ectopic lateral root cap cells in the elongation zone (where lateral root cap cells normally die) results in the development of gaps in the epidermis. These observations indicate that TRN1 and TRN2 are required to maintain the distinction between the lateral root cap and epidermis and suggest that lateral root cap fate is the default state. It also suggests that TRN1 and TRN2 repress lateral root cap fate in cells in the epidermal location. Furthermore, the position-dependent pattern of root hair and non-root hair cell differentiation in the epidermis is defective in trn1 and trn2 mutants. Together these results indicate that TRN1 and TRN2 are required for the maintenance of both the radial pattern of tissue differentiation in the root and for the subsequent circumferential pattern within the epidermis.  相似文献   

19.
The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal.  相似文献   

20.
Approximately 35–55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate‐rich and nitrate‐poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g?1) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate‐rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate‐rich and nitrate‐poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号