首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucanohydrolases, especially mutanase [alpha-(1-->3) glucanase; EC 3.2.1.59] and dextranase [alpha-(1-->6) glucanase; EC 3.2.1.11], which are present in the biofilm known as dental plaque, may affect the synthesis and structure of glucans formed by glucosyltransferases (GTFs) from sucrose within dental plaque. We examined the production and the structure of glucans synthesized by GTFs B (synthesis of alpha-(1-->3)-linked glucans) or C [synthesis of alpha-(1-->6)- and alpha-(1-->3)-linked glucans] in the presence of mutanase and dextranase, alone or in combination, in solution phase and on saliva-coated hydroxyapatite beads (surface phase). The ability of Streptococcus sobrinus 6715 to adhere to the glucan, which was formed in the presence of the glucanohydrolases was also explored. The presence of mutanase and/or dextranase during the synthesis of glucans by GTF B and C altered the proportions of soluble to insoluble glucan. The presence of either dextranase or mutanase alone had a modest effect on total amount of glucan formed, especially in the surface phase; the glucanohydrolases in combination reduced the total amount of glucan. The amount of (1-->6)-linked glucan was reduced in presence of dextranase. In contrast, mutanase enhanced the formation of soluble glucan, and reduced the percentage of 3-linked glucose of GTF B and C glucans whereas dextranase was mostly without effect. Glucan formed in the presence of dextranase provided fewer binding sites for S. sobrinus; mutanase was devoid of any effect. We also noted that the GTFs bind to dextranase and mutanase. Glucanohydrolases, even in the presence of GTFs, influence glucan synthesis, linkage remodeling, and branching, which may have an impact on the formation, maturation, physical properties, and bacterial binding sites of the polysaccharide matrix in dental plaque. Our data have relevance for the formation of polysaccharide matrix of other biofilms.  相似文献   

2.
Candida albicans and mutans streptococci are frequently detected in dental plaque biofilms from toddlers afflicted with early childhood caries. Glucosyltransferases (Gtfs) secreted by Streptococcus mutans bind to saliva-coated apatite (sHA) and to bacterial surfaces, synthesizing exopolymers in situ, which promote cell clustering and adherence to tooth enamel. We investigated the potential role Gtfs may play in mediating the interactions between C. albicans SC5314 and S. mutans UA159, both with each other and with the sHA surface. GtfB adhered effectively to the C. albicans yeast cell surface in an enzymatically active form, as determined by scintillation spectroscopy and fluorescence imaging. The glucans formed on the yeast cell surface were more susceptible to dextranase than those synthesized in solution or on sHA and bacterial cell surfaces (P < 0.05), indicating an elevated α-1,6-linked glucose content. Fluorescence imaging revealed that larger numbers of S. mutans cells bound to C. albicans cells with glucans present on their surface than to yeast cells without surface glucans (uncoated). The glucans formed in situ also enhanced C. albicans interactions with sHA, as determined by a novel single-cell micromechanical method. Furthermore, the presence of glucan-coated yeast cells significantly increased the accumulation of S. mutans on the sHA surface (versus S. mutans incubated alone or mixed with uncoated C. albicans; P < 0.05). These data reveal a novel cross-kingdom interaction that is mediated by bacterial GtfB, which readily attaches to the yeast cell surface. Surface-bound GtfB promotes the formation of a glucan-rich matrix in situ and may enhance the accumulation of S. mutans on the tooth enamel surface, thereby modulating the development of virulent biofilms.  相似文献   

3.
Serine-rich repeat glycoproteins identified from streptococci and staphylococci are important for bacterial adhesion and biofilm formation. Two putative glycosyltransferases, Gtf1 and Gtf2, from Streptococcus parasanguinis form a two-protein enzyme complex that is required for glycosylation of a serine-rich repeat adhesin, Fap1. Gtf1 is a glycosyltransferase; however, the function of Gtf2 is unknown. Here, we demonstrate that Gtf2 enhances the enzymatic activity of Gtf1 by its chaperone-like property. Gtf2 interacted with Gtf1, mediated the subcellular localization of Gtf1, and stabilized Gtf1. Deletion of invariable amino acid residues in a conserved domain of unknown function (DUF1975) at the N terminus of Gtf2 had a greater impact on Fap1 glycosylation than deletion of the C-terminal non-DUF1975 residues. The DUF1975 deletions concurrently reduced the interaction between Gtf1 and Gtf2, altered the subcellular localization of Gtf1, and destabilized Gtf1, suggesting that DUF1975 is crucial for the chaperone activity of Gtf2. Homologous GtfA and GtfB from Streptococcus agalactiae rescued the glycosylation defect in the gtf1gtf2 mutant; like Gtf2, GtfB also possesses chaperone-like activity. Taken together, our studies suggest that Gtf2 and its homologs possess the conserved molecular chaperone activity that mediates protein glycosylation of bacterial adhesins.  相似文献   

4.
Several starter cultures used in the production of fermented beverages were screened for lactic acid bacteria that produced water-insoluble polysaccharides from sucrose. The strain producing the greatest amount was identified as Lactobacillus satsumensis by its 16S RNA sequence and was deposited in the ARS culture collection as NRRL B-59839. This strain produced at least two α-d-glucans from sucrose. One was a water-soluble dextran, consisting of predominantly α-(1?→?6)-linked d-glucose units, and the other was a water-insoluble glucan containing both α-(1?→?6)-linked and α-(1?→?3)-linked d-glucose units. The culture fluid was found to contain glucansucrases responsible for the two glucans, and no significant level of fructansucrase was detected. Glucansucrase activity was not present in the culture fluid when the bacteria were grown on glucose, fructose, or raffinose as the carbon source. Although the water-soluble glucans produced by cell-free enzyme and by cell suspensions were essentially identical, the same was not true for the water-insoluble glucans. The water-insoluble glucan produced by cell-free culture fluid contained a higher proportion of α-(1?→?3)-linked d-glucose units than the water-insoluble glucan produced by cell suspensions.  相似文献   

5.
Two glucosyltransferases from Streptococcus mutans 6715 were purified and separated. One of the glucosyltransferases synthesized an insoluble glucan, and the other, a soluble glucan. The enzymes were immobilized on Bio-Gel P-2 beads, and the mechanism of glucan synthesis was studied by pulse and chase techniques with 14C-sucrose. Label was associated with the immobilized enzymes. The label could be quantitatively released by heating at pH 2. Analysis of the labeled products from the pulse experiment showed labeled glucose and labeled glucan; the chase experiment showed labeled glucan and a significant decrease in labeled glucose. The glucans from the pulse and the chase experiments were separated from glucose by chromatography on Bio-Gel P-6. They were reduced with sodium borohydride, and the products hydrolyzed with acid. Analysis of the labeled products from the reduced and hydrolyzed, pulsed glucans showed labeled glucose and labeled glucitol; label in the glucitol was greatly decreased in the chase experiment. These experiments showed that glucose and glucan were covalently attached to the active site of the enzymes during synthesis, and that the glucose was being transferred to the reducing end of the glucan chain. A mechanism for the synthesis of the glucans is proposed in which there are two catalytic groups on each enzyme that holds glucosyl and glucanosyl units. During synthesis, the glucosyl and glucanosyl units alternate between the two sites, giving elongation of the glucans from the reducing end. The addition of increasing amounts of B-512F dextran to the insoluble-glucan-forming glucosyltransferase produced a decrease in the proportion of insoluble glucan formed and a concomitant increase in a soluble glucan. The total amount of glucan synthesized (soluble plus insoluble) was increased 1.6 times over the amount of insoluble glucan formed when no exogenous dextran was added. It is shown that the addition of B-512F dextran affects the solubility of the synthesized alpha-(1 to 3)-glucan by accepting alpha-(1-3)-glucan chains at various positions along the dextran chain, to give a soluble, graft polymer.  相似文献   

6.
An enzyme hydrolyzing the water-insoluble glucans produced from sucrose by Streptococcus mutans was purified from the culture concentrate of Streptomyces chartreusis strain F2 by ion-exchange chromatography on diethylaminoethyl cellulose and carboxymethyl cellulose columns and gel filtration on Bio-Gel A-1.5m. The purification achieved was 6.4-fold, with an overall yield of 27.3%. Electrophoresis of the purified enzyme protein gave a single band on a sodium dodecyl sulfate-polyacrylamide gel slab. Its molecular weight was estimated to be approximately 68,000, but there is a possibility that the native enzyme exists in an aggregated form or is an oligomer of the peptide subunits, have a molecular weight larger than 300,000. The pH optimum of the enzyme was 5.5 to 6.0, and its temperature optimum was 55 degrees C. The enzyme lost activity on heating at 65 degrees C for 10 min. The enzyme activity was completely inhibited by the presence of 1 mM Mn2+, Hg2+, Cu2+, Ag2+, or Merthiolate. The Km value for the water-insoluble glucan of S. mutans OMZ176 was an amount of glucan equivalent to 1.54 mM glucose, i.e., 0.89 mM in terms of the alpha-1,3-linked glucose residue. The purified enzyme was specific for glucans containing an alpha-1,3-glucosidic linkage as the major bond. The enzyme hydrolyzed the S. mutans water-insoluble glucans endolytically, and the products were oligosaccharides. These results indicate that the enzyme elaborated by S. chartreusis strain F2 is an endo-alpha-1,3-glucanase (EC 3.2.1.59).  相似文献   

7.
Methylation analysis of water-insoluble α-D-glucans synthesized from sucrose by culture filtrates from several strains of Streptococcus spp. has proved that all of the glucans were highly branched and that the chains contained (1→6)- and (1→3)-linked D-glucose residues not involved in branch points. Hydrolysis of the glucans with a specific endo-(1→3)-α-D-glucanase demonstrated that the majority of the (1→3)-linked glucose residues were arranged in sequences. D-Glucose was the major product of the hydrolysis, and a small proportion of nigerose was also released. The use of a specific endo-(1→6)-α-D-glucanase similarly indicated that the glucans also contained sequences of (1→6)-linked α-D-glucose residues, and that those chains were branched. Two D-glucosyltransferases (GTF-S and GTF-I), which reacted with sucrose to synthesize a soluble glucan and a water-insoluble glucan, respectively, were separated from culture filtrates of S. mutans OMZ176. The soluble glucan was characterized as a branched (1→6)-α-D-glucan, whereas the insoluble one was a relatively linear (1→3)-α-D-glucan. The hypothesis is advanced that the glucosyltransferases can transfer glucan sequences by means of acceptor reactions similar to those proposed by Robyt for dextransucrase, leading to the synthesis of a highly branched glucan containing both types of chain. The resulting structure is consistent with the evidence obtained from methylation analysis and enzymic degradations, and explains the synergy displayed when the two D-glucosyltransferases interact with sucrose. Variations in one basic structure can account for the characteristics of water-insoluble glucans from S. sanguis and S. salivarius, and for the strain-dependent diversity of S. mutans glucans.  相似文献   

8.
An assay for GDP-fucose:polypeptide fucosyltransferase has beenestablished. The enzyme catalyzes the reaction that attachesfucose through an O-glycosidic linkage to a conserved serineor threonine residue in EGF domains. The assay uses recombinanthuman factor VII EGF-1 domain as acceptor substrate and GDP-fucoseas donor substrate. Synthetic peptides with sequences takenfrom five proteins previously shown to contain O-linked fucose(Harris and Spellman, 1993; Glycobiology 3, 219–224) didnot serve as efficient acceptor substrates. These syntheticpeptides did not comprise complete EGF domains and did not containall six cysteine residues that define the EGF structure. Therefore,the enzyme appears to require more than just a consensus primarysequence and likely requires that the EGF domain disulfide bondsbe properly formed. The enzymatic reaction showed linear dependencyof its activity on time, amount of enzyme, and substrates. Althoughthe enzyme did not exhibit an absolute requirement for Mn2+enzymatic activity did increase ten fold in the presence of50 mM MnCl2. The in vitro glycosylation reaction resulted incomplete conversion of the acceptor substrate to glycosylatedproduct, and characterization of the purified product by electrospraymass spectrometry revealed that one fucose was added onto thepolypeptide. Most of the enzymatic activity was found to bein the soluble fraction of CHO cell homogenates. However, whenenzyme was prepared from rat liver in the presence of proteaseinhibitors, 37% of the activity was recovered by Triton X-100extraction of the membrane particles after extensive aqueouswashes. The result suggests that the enzyme is probably a membraneprotein and, by analogy with other glycosyl transferases, probablyhas a ‘stem’ region that is very susceptible toproteolysis. fucosyltransferase O-linked fucose EGF domain glycosylation  相似文献   

9.
Regenerating spheroplasts of Candida albicans formed organized glucan nets in liquid culture. The nets consisted of interwoven microfibrils about 50 nm wide, but of an undetermined length. Partial acid hydrolysis of the polysaccharide showed the presence of chains of beta(1----3)- and beta(1----6)-linked glucose residues, but no intrachain beta(1----3) and beta(1----6) linkages. Periodate oxidation and GLC of the methylated glucan indicated a highly branched polymer (9.5% branch points). Sequential enzymic degradation of the isolated nets confirmed the presence of chains of beta(1----3)- and beta(1----6)-linked glucose residues. Degradation by (1----3)-beta- and (1----6)-beta-glucanase released 23% (w/w) and 30% (w/w) respectively of the carbohydrate as glucose equivalents. The residual material was degraded by chitinase. Equal amounts of N-acetylglucosamine and glucose equivalents were detected in the chitinase hydrolysate, suggesting a possible linkage between glucan and chitin. Our data indicate that the cell wall of C. albicans contains at least two highly branched glucans with predominantly beta(1----3) or beta(1----6) linkages.  相似文献   

10.
Water‐insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α‐1,3‐glucanase) and dextranase (α‐1,6‐glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi‐functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE‐SUMOstar Amp plasmid vector. The resultant his‐tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non‐adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol‐sulfuric acid method, and reducing sugars were quantified by the Somogyi–Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose‐dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.  相似文献   

11.
Glucosyltransferases (Gtfs) catalyze the synthesis of glucans from sucrose and are produced by several species of lactic-acid bacteria. The oral bacterium Streptococcus mutans produces large amounts of glucans through the action of three Gtfs. GtfD produces water-soluble glucan (WSG), GtfB synthesizes water-insoluble glucans (WIG) and GtfC produces mainly WIG but also WSG. These enzymes, especially those synthesizing WIG, are of particular interest because of their role in the formation of dental plaque, an environment where S. mutans can thrive and produce lactic acid, promoting the formation of dental caries. We sequenced the gtfB, gtfC and gtfD genes from several mutans streptococcal strains isolated from the oral cavity of humans and searched for their homologues in strains isolated from chimpanzees and macaque monkeys. The sequence data were analyzed in conjunction with the available Gtf sequences from other bacteria in the genera Streptococcus, Lactobacillus and Leuconostoc to gain insights into the evolutionary history of this family of enzymes, with a particular emphasis on S. mutans Gtfs. Our analyses indicate that streptococcal Gtfs arose from a common ancestral progenitor gene, and that they expanded to form two clades according to the type of glucan they synthesize. We also show that the clade of streptococcal Gtfs synthesizing WIG appeared shortly after the divergence of viviparous, dentate mammals, which potentially contributed to the formation of dental plaque and the establishment of several streptococci in the oral cavity. The two S. mutans Gtfs capable of WIG synthesis, GtfB and GtfC, are likely the product of a gene duplication event. We dated this event to coincide with the divergence of the genomes of ancestral early primates. Thus, the acquisition and diversification of S. mutans Gtfs predates modern humans and is unrelated to the increase in dietary sucrose consumption.  相似文献   

12.
Procedures were developed for the isolation and culture of an anucleate protoplast system from cotton fibers actively undergoing secondary wall synthesis. Because the fibers at this stage are elongated single cells (30 m × 1–2 cm), most of the cellular vesicles released in the process of isolation are anucleate. After purification, the protoplast population was nuclei-free. When transferred to culture medium, the anucleate protoplasts (cytoplasts) synthesized starch, hydrolyzed fluorescene diacetate for up to 9 days and formed cell wall material for at least 7 days. The composition of the regenerated cell walls was dependent upon the substrate supplied in the medium: -1,3-linked glucans were predominantly synthesized when 1 mM UDP[14C]glucose was supplied; -1,4-linked glucans were predominantly synthesized when 1 mM [14C]-glucose was supplied. Thus the composition of the regenerated cell walls formed by the anucleate protoplasts was similar to the secondary cell wall synthesized by intact cotton fibers under the same culture conditions.  相似文献   

13.
Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.Oral diseases related to dental biofilms afflict the majority of the world''s population, and dental caries is still the single most prevalent and costly oral infectious disease (12, 32). Dental caries results from the interaction of specific bacteria with constituents of the diet within a biofilm formed on the tooth surface known as plaque (5, 36). Streptococcus mutans is a key contributor to the formation of biofilms associated with dental caries disease, although other microorganisms may also be involved (3); S. mutans (i) effectively utilizes dietary sucrose (and possibly starch) to rapidly synthesize exopolysaccharides (EPS) using glucosyltransferases and a fructosyltransferase that adsorb to surfaces, (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is acidogenic and acid tolerant (5, 30).In general, biofilms develop after initial attachment of microbes to a surface, followed by formation of highly structured cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which are in a complex extracellular matrix (6, 49). The majority of biofilm matrices contain exopolysaccharides, and dental biofilms are no exception; up to 40% of the dry weight of dental plaque is composed of polysaccharides (depending on the type of carbohydrate consumption and the time of plaque collection), which are mostly glucans synthesized by microbial glucosyltransferases (Gtfs) (for a review, see reference 36). S. mutans plays a major role in the development and establishment of the EPS matrix in dental biofilms. This bacterium produces at least three Gtfs, which are products of the gtfB, gtfC, and gtfD genes; GtfB synthesizes mostly insoluble glucans containing elevated amounts of α-1,3-linked glucose, GtfC synthesizes a mixture of insoluble and soluble glucans (rich in α-1,6-linked glucose), and GtfD synthesizes predominantly soluble glucans (for reviews, see references 30 and 36). The Gtfs secreted by S. mutans bind avidly to the pellicle formed on the tooth surface and to bacterial surfaces and are enzymatically active; when they are exposed to sucrose, glucans are formed in situ within minutes (17, 33, 38, 40, 46). It is noteworthy that most nonstreptococcal oral bacteria (e.g., Actinomyces and Veillonella spp.) do not produce glucans unless Gtfs are adsorbed on their surfaces (33, 46). The glucans synthesized in situ provide binding sites for colonization and accumulation of S. mutans on the apatitic surface and for binding to each other through interactions with several membrane-associated glucan-binding proteins and surface glucans (8, 39, 47). The exopolymers also contribute to the bulk and physical integrity and stability of the biofilm matrix (for a review, see reference 36). The glucan-mediated processes promote tight adherence and coherence of bacterial cells bound to each other and to the apatitic surface, which leads to the formation of microcolonies by S. mutans and thereby modulates the initial steps of cariogenic biofilm development.When dietary sucrose is consumed frequently, S. mutans, as a member of the oral biofilm community, continues to synthesize polysaccharides and metabolize this sugar to form organic acids. The elevated amounts of EPS, which may involve upregulation of gtf genes in response to pH and carbohydrate availability (29), increase the virulence of the biofilms (42, 51). In addition, the ability of S. mutans to utilize some extra- and intracellular polysaccharides as short-term storage compounds provides an additional ecological benefit and simultaneously increases the amount of acid produced and the extent of acidification within the biofilm (5, 7). The persistence of this aciduric environment leads to selection and dominance of highly acid-tolerant (and acidogenic) organisms, such as S. mutans (32, 37); the low-pH environment in the biofilm matrix results in dissolution of enamel, thus initiating the pathogenesis of dental caries (32, 36).Recently, we have shown that EPS produced by S. mutans Gtfs modulate the initial formation, sequence of assembly, and structural organization of microcolonies by this bacterium on apatitic surfaces (50). However, it was unclear which of the Gtf enzymes were associated with these processes. Furthermore, the polysaccharides may also modulate the formation of microcolonies by complex ecological interactions in a multispecies system. In this study, we investigated (i) the role of each of the S. mutans gtf genes in EPS matrix and microcolony development on a saliva-coated hydroxyapatite (sHA) surface and (ii) the influence of exopolysaccharides on establishment of microcolonies at distinct developmental phases during formation of biofilms by S. mutans in the presence of Streptococcus oralis and Actinomyces naeslundii.(This study was presented at 5th ASM Conference on Biofilms, Cancun, Mexico, 15 to 19 November 2009.)  相似文献   

14.
Streptococcus mutans serotype c produces several extracellular proteins which bind to affinity columns of immobilized glucans. The proteins are three distinct glucosyltransferases and another glucan-binding protein (molecular weight 74000) which is now shown to be a fructosyltransferase. This enzyme is antigenically distinct and genetically independent of two other fructosyltransferases produced by the same organism. A mutant is described which lacks the glucan binding fructosyltransferase and has defective ability to form adherent colonies in the presence of sucrose. Although the production of glucans from sucrose results in the glucan binding protein becoming bound to the bacterial surface, and hence perhaps contributing to adherence, the fructans synthesized by the enzyme do not appear to contribute to this phenomenon.  相似文献   

15.
The cell wall material from fruiting bodies of Laetiporus sulphureus has been suggested as a new alternative to mutan for the mutanase induction in Trichoderma harzianum. Structural analyses revealed that the alkali-soluble wall fraction from this polypore fungus contained 56.3% of (1-->3)-linked alpha-glucans. When the strain T. harzianum F-340 was grown on a cell wall preparation from L. sulphureus, the maximal enzyme productivity obtained after 3 days of cultivation was 0.71 U/ml. This yield was about 1.8-fold higher than that achieved on mutan, known so far as the best, but expensive and inaccessible, inducer of mutanase production. Cell-wall-induced mutanase showed a high hydrolytic potential in reaction with a dextranasepretreated mutan, where maximal degrees of saccharification and solubilization of this biopolymer (80% and 100%, respectively) were reached in 3 h at 45oC. The mutanase preparation was also effective in degradation of streptococcal mutan and its removal from oral biofilms, especially in a mixture with dextranase.  相似文献   

16.
Glucosyltransferases (GtfB/C/D) in Streptococcus mutans are responsible for synthesizing water-insoluble and water-soluble glucans from sucrose and play very crucial roles in the formation of dental plaque. A monoclonal antibody against a 19-mer peptide fragment named Gtf-P1 was found in GtfC to reduce the enzyme activity to 50%. However, a similar experiment suggested almost unchanged activity in GtfD, despite of the very high sequence homology between the two enzymes. No further details are yet available to elucidate the biochemical mechanism responsible for such discrimination. For a better understanding of the catalytic behavior of these glucosyltransferases, structural and functional analyses were performed. First, the exact epitope was identified to specify the residue(s) required for monoclonal antibody recognition. The results suggest that the discrimination is determined solely by single residue substitution. Second, based on a combined sequence and secondary structure alignment against known crystal structure of segments from closely related proteins, a three-dimensional homology model for GtfC was built. Structural analysis for the region communicating between Gtf-P1 and the catalytic triad revealed the possibility for an "en bloc" movement of hydrophobic residues, which may transduce the functional influence on enzyme activity from the surface of molecule into the proximity of the active site. Figure Side chain interactions between Gtf-P1 and catalytic Asp-477 in GtfC. Calpha-tracing of GtfC with the two crucial peptides (Gtf-P1, orange; Gtf-P2, blue) and the catalytic triad residues ( red) highlighted to show their relative spatial organization. Side chains for the residues are also depicted according to their atom types. The structure is viewed with the barrel opening facing down  相似文献   

17.
Bradyrhizobium japonicum USDA 110 synthesized both extracellular and periplasmic polysaccharides when grown on mannitol minimal medium. The extracellular polysaccharides were separated into a high-molecular-weight acidic capsular extracellular polysaccharide fraction (90% of total hexose) and three lower-molecular-weight glucan fractions by liquid chromatography. Periplasmic glucans, extracted from washed cells with 1% trichloroacetic acid, gave a similar pattern on liquid chromatography. Linkage analysis of the major periplasmic glucan fractions demonstrated mainly 6-linked glucose (63 to 68%), along with some 3,6- (8 to 18%), 3- (9 to 11%), and terminal (7 to 8%) linkages. The glucose residues were β-linked as shown by 1H-nuclear magnetic resonance analysis. Glucan synthesis by B. japonicum cells grown on mannitol medium with 0 to 350 mM fructose as osmolyte was measured. Fructose at 150 mM or higher inhibited synthesis of periplasmic and extracellular 3- and 6-linked glucans but had no effect on the synthesis of capsular acidic extracellular polysaccharides.  相似文献   

18.
Insect lectins are important as part of nonspecific self-defense, but their antifungal mechanisms remain to be elucidated. Fungi contain glucans on the cell surface and insect glucan-binding proteins are considered to be essential for antifungal mechanisms. We purified glucose-binding proteins from hemolymph of pupae of the silkworm Bombyx mori, and the amino acid sequence analysis showed that their two proteins are 30-kDa lipoproteins, major components of B. mori hemolymph. These lipoproteins specifically bound to glucose and glucans, suggesting that they are involved in insect self-defense systems.  相似文献   

19.
Saffron (Crocus sativus) stigmata contain rare water-soluble carotenoids and the major one is crocin, the crocetin digentiobiosyl-ester. Previous studies indicated that two glucosyltransferases might be involved in the formation of crocetin glucosyl- and gentiobiosyl-esters (Dufresne et al. 1997). A UDP-Glc: crocetin 8,8′-glucosyltransferase involved in the biosynthesis of crocetin monoglucosyl- and diglucosyl-esters was extracted from saffron cell cultures and purified 300-fold by gel filtration chromatography and preparative IEF electrophoresis, with a recovery of 13 percnt;. The purified enzyme preparation was highly specific for crocetin and formed ester bonds between the glucose moiety of UDP-Glc and the free carboxyl functions of crocetin. The enzyme did not add other glucose units to the glucosyl-esters to form crocetin gentiobiosyl-esters. A crude desalted extract of the same material was less specific and formed glucosyl-esters with several other compounds, including abscisic and retinoic acids. The purified preparation was active between pH 4.4 and 4.6. SDS-PAGE revealed a major band at 26 kDa while the native molecular mass determined by gel filtration was in the range of 49 to 55 kDa. The study provides concrete evidence for the hypothesis that more than one glucosyltransferase is involved in the biosynthesis of crocetin glycosyl-esters in saffron.  相似文献   

20.
Neutral glucans were isolated from the stipes and fronds of Eklonia radiata and Cystophora scalaris. Partial acid hydrolysis revealed the presence of gentiobiose and laminara-oligosaccharides. Methylation analysis, periodate oxidation, and enzyme studies indicated that the glucans contain β-(1→3) and β-(1→6) linkages. Methylation studies showed that branching in these glucans occurs via a 1,3,6-tri-O- substituted residue with a frequency of one branch point per seven glycosyl residues. In contrast to laminaran from Laminaria digitata, the intrachain (1→3)- and (1→6)- glucopyranoside occur in a molar ratio of 1:1. Enzymic hydrolysis confirmed the absence of long segments of (1→3)-linked residues in the glucans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号