首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human‐made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species‐rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.  相似文献   

6.
The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.  相似文献   

7.
8.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

9.
The Plant Dispersal and Migration workshop was held in Montpellier, France, from 19 to 23 June 2001.  相似文献   

10.
11.
Niche conservatism has been proposed as the mechanism driving speciation in temperate montane clades through range fragmentation during climatic oscillations. Thus, a negative relationship between speciation rates and niche width is expected. Here, we test this prediction using American zopherine beetles. Our phylogenetic analyses recovered two clades in addition to that of the genus Zopherus: the genera Verodes and Phloeodes, which originated most likely in the Eocene, and diversified during the Miocene and the Pliocene. The assessment of clade niche width in relation to clade diversity supported the proposition of narrow niches leading to a higher probability of range fragmentation during climatic oscillations, thus increasing speciation. Additionally, almost all current populations of Phloeodes and Verodes are located within regions that retained favourable climatic conditions across warm and cold Pleistocene periods, suggesting that dispersal limitation is a strong factor controlling clade distribution. In sum, our results suggest that (i) niche width is a major determinant of the probability of speciation in temperate montane clades, by controlling the probability of potential range fragmentation and (ii) dispersal limitation is also a major determinant of the speciation process, by increasing the fragmentation of realized ranges even when potential distributions are cyclically fused during climatic oscillations. When dispersal limitation is extreme, as in zopherine beetles, populations persist just in those areas that have retained suitable conditions during extremes of past climatic oscillations. Paradoxically, this relict condition confers zopherine beetles great resilience for facing future climate change.  相似文献   

12.
Shorebirds (Charadriiformes) undergo rapid migrations with potential for long‐distance dispersal (LDD) of plants. We studied the frequency of endozoochory by shorebirds in different parts of Europe covering a broad latitudinal range and different seasons. We assessed whether plants dispersed conformed to morphological dispersal syndromes. A total of 409 excreta samples (271 faeces and 138 pellets) were collected from redshank Tringa totanus, black‐winged stilt Himantopus himantopus, pied avocet Recurvirostra avosetta, northern lapwing Vanellus vanellus, Eurasian curlew Numenius arquata and black‐tailed godwit Limosa limosa in south‐west Spain, north‐west England, southern Ireland and Iceland in 2005 and 2016, and intact seeds were extracted and identified. Godwits were sampled just before or after migratory movements between England and Iceland. The germinability of seeds was tested. Intact diaspores were recovered from all bird species and study areas, and were present in 13% of samples overall. Thirteen plant families were represented, including Charophyceae and 26 angiosperm taxa. Only four species had an ‘endozoochory syndrome’. Four alien species were recorded. Ellenberg values classified three species as aquatic and 20 as terrestrial. Overall, 89% of seeds were from terrestrial plants, and 11% from aquatic plants. Average seed length was higher in redshank pellets than in their faeces. Six species were germinated, none of which had an endozoochory syndrome. Seeds were recorded during spring and autumn migration. Plant species recorded have broad latitudinal ranges consistent with LDD via shorebirds. Crucially, morphological syndromes do not adequately predict LDD potential, and more empirical work is required to identify which plants are dispersed by shorebirds. Incorporating endozoochory by shorebirds and other migratory waterbirds into plant distribution models would allow us to better understand the natural processes that facilitated colonization of oceanic islands, or to improve predictions of how plants will respond to climate change, or how alien species spread.  相似文献   

13.
Long-distance seed dispersal in plant populations   总被引:3,自引:0,他引:3  
Long-distance seed dispersal influences many key aspects of the biology of plants, including spread of invasive species, metapopulation dynamics, and diversity and dynamics in plant communities. However, because long-distance seed dispersal is inherently hard to measure, there are few data sets that characterize the tails of seed dispersal curves. This paper is structured around two lines of argument. First, we argue that long-distance seed dispersal is of critical importance and, hence, that we must collect better data from the tails of seed dispersal curves. To make the case for the importance of long-distance seed dispersal, we review existing data and models of long-distance seed dispersal, focusing on situations in which seeds that travel long distances have a critical impact (colonization of islands, Holocene migrations, response to global change, metapopulation biology). Second, we argue that genetic methods provide a broadly applicable way to monitor long-distance seed dispersal; to place this argument in context, we review genetic estimates of plant migration rates. At present, several promising genetic approaches for estimating long-distance seed dispersal are under active development, including assignment methods, likelihood methods, genealogical methods, and genealogical/demographic methods. We close the paper by discussing important but as yet largely unexplored areas for future research.  相似文献   

14.
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

15.
16.
Climate change is likely to affect plants in multiple ways, but predicting the consequences for habitat suitability requires a process‐based understanding of the interactions. This is at odds with existing approaches that are mostly phenomenological and largely restricted to predicting the effects of changing temperature and rainfall on species distributions at a coarse spatial scale. We examine the multiple effects of climate change, including predicting the effects of altered flood regimes and land‐use change, on the potential distribution of the invasive riparian species lippia (Phyla canescens) across a 26 000 km2 catchment in eastern Australia. We determined habitat suitability for lippia by combining process‐understanding of experts and an eco‐physiological bioclimatic model within a Bayesian belief network. The bioclimatic model predicted substantial changes in habitat suitability by 2070 under both a wetter (Echam Mark 3) and drier (Hadley Centre Mark 2) climate change scenario, but only the more likely drier scenario reduced suitability in our test region. The area suitable for lippia was predicted to increase at least threefold with increased flooding under a wet climate scenario, although this would be partially negated by land‐use change to cultivation. The region would become unsuitable to lippia with reduced flooding under a drier scenario irrespective of land‐use changes, although existing populations would persist if grazing persisted. Independent field validation verified model structure and parameterization, and therefore the opinion of experts, but identified site‐scale deficiencies in the available environmental data layers. Model predictions suggest that adaptation options for managing lippia will be greatly reduced under a drying scenario, but identify potential restoration opportunities under either scenario. This work highlights the value of predictive models that incorporate process‐understanding at sufficiently fine spatial resolution to capture the important processes underpinning habitat suitability.  相似文献   

17.
Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species.  相似文献   

18.
植物物候与气候研究进展   总被引:34,自引:1,他引:34  
植物物候及其变化是多个环境因子综合影响的结果,其中气候是最重要、最活跃的环境因子。主要从气候环境角度分析了植物物候与气候以及气候变化间的相互关系,概述了国内外有关植物物候及物候模拟等方面的研究进展。表明,温度是影响物候变化最重要的因子;同时,水分成为胁迫因子时对物候的影响也十分重要。近50a左右,世界范围内的植物物候呈现出了春季物候提前,秋季物候推迟或略有推迟的特征,从而导致了多数植物生长季节的延长,并成为全球物候变化的趋势。全球气候变暖改变了植物开始和结束生长的日期,其中冬季、春季气温的升高使植物的春季物候提前是植物生长季延长的主要原因。目前对物候学的研究方向主要集中在探讨物候与气候变化之间的关系,而模型模拟是定量研究气候变化与植物物候之间关系的重要方式,国内外已经开发出多种物候模型来分析气候驱动与物候响应之间的因果关系。另外遥感资料的应用也为物候模型研究提供了新的方向。物候机理研究、物候与气候关系以及物候模型研究将是研究的重点。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号