首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies (mcAbs) specific to alkaline isoenzymes of horseradish peroxidase were used to characterize the antigenic properties of horseradish peroxidase. The results of a competitive binding assay indicated that monoclonal antibodies can be divided into three groups directed against distinct parts of the protein. The interaction of monoclonal antibodies with native and modified horseradish peroxidase showed also three different patterns of reactivity. Antibodies from groups I and II are directed against epitopes which are conformational and formed by tertiary structure elements. Epitopes recognized by these antibodies are sensitive to heme removal or partial denaturation of peroxidase. Antibodies from group III bind specifically with epitopes consisting of primary or secondary structure elements. The antigenic determinants recognized by antibodies from group III PO 1 and 36F 9 were shown to be linear (continuous) and formed by amino acid residues 261-267 and 271-277, respectively, as determined by the peptide scanning method (PEPSCAN). The location of revealed linear antigenic determinants in the molecular structure of peroxidase is analyzed.  相似文献   

2.
Two protocols for sandwich antigen-capture ELISA of human myoglobin were compared. In the first (routine) variant, 14D6 monoclonal antibodies conjugated to horseradish peroxidase were used as the secondary antibodies. Bifunctional antibodies specific for myoglobin/peroxidase were used as the secondary antibodies in the second variant. The myoglobin-binding site of the bifunctional antibodies was similar to that of the 14D6 antibodies, and the second antigen-binding site of the bifunctional antibodies was bound to horseradish peroxidase. When comparing standard calibration curves, the effective concentration of the bifunctional antibodies and that of antibodies conjugated to horseradish peroxidase were made equal. It is shown that the use of bispecific antibodies as the secondary antibodies does not improve the quality of the parameters tested, i.e., the sensitivity of the assay does not increase and the slope of the calibration curve remains constant.  相似文献   

3.
A panel of eight monoclonal antibodies raised against horseradish root peroxidase has been assembled and characterized. Affinity constants were determined for all antibodies, and their specificity for various structural forms of the enzyme (native peroxidase, apoperoxidase, and denatured peroxidase) were assessed by competitive enzyme immunoassay. The effects of the antibodies on the process of refolding of peroxidase after its denaturing with 6.5 M guanidine hydrochloride were studied spectrophotometrically, by the restoration of the enzymatic activity in the reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate). The yield of the active enzyme in the course of the refolding was increased 1.5 to 1.7 times in the presence of antibody H1. Effects of the antibodies constituting the panel on the activity of native peroxidase and the stability of its dilute solutions were analyzed.  相似文献   

4.
Ten monoclonal antibodies (McAbs) have been produced against the cationic peroxidase from peanut suspension cell culture. Eight of these antibodies were found to be of the immunoglobulin (Ig)G1 subclass and two were of IgA subclass. A combination of competitive enzyme-linked immunosorbent assay, Western blotting analysis, and direct antigen-binding assay revealed that the antibodies are directed against four different epitopes on the cationic peroxidase and the McAbs can be subdivided into four groups. Only group A inhibits peroxidase activity. Group B and D bind equally well to the native and the denatured form of cationic peroxidase, whereas the remaining McAbs react with more or less reduced affinity to the denatured antigen. Group C probably recognizes a conformation-dependent epitope. All the McAbs cross react weakly with the anionic peanut peroxidase, suggesting a structural nonidentity as well as some similarity between these two peroxidase isozymes. Cross reactivities of these McAbs with peroxidases of various plant species were also demonstrated.  相似文献   

5.
A panel of eight monoclonal antibodies raised against horseradish root peroxidase was assembled and characterized. Affinity constants were determined for all antibodies, and their specificity for various structural forms of the enzyme (native peroxidase, apoperoxidase, and denatured peroxidase) were assessed by competitive enzyme immunoassay. The effects of the antibodies on the process of refolding of peroxidase after its denaturing with 6.5 M guanidine chloride were studied spectrophotometrically, by the restoration of the enzymatic activity in the reaction of 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonate) oxidation. The yield of the active enzyme in the course of the refolding was increased by 1.5–1.7 times in the presence of antibody H1. Effects of the antibodies constituting the panel on the activity of native peroxidase and the stability of its dilute solutions were analyzed.  相似文献   

6.
A novel strategy for design of haptens that were used to produce catalytic antibodies was developed and three monoclonal antibodies, 3G5, 2F3, and 5C9, were generated using this strategy. These monoclonal antibodies were converted into selenium-containing abzymes by chemically modifying the hydroxyl group of serines followed by sodium hydrogen selenide displacement. These selenium-containing abzymes exhibited remarkable glutathione peroxidase activity, which surpasses the activity of some native glutathione peroxidases. The activities of the selenium-containing abzymes Se-3G5, Se-2F3, and Se-5C9 which catalyzed reduction of hydroperoxides by glutathione were 2.23, 4.20, and 3.79 times that of rabbit liver glutathione peroxidase, respectively. Detailed steady-state kinetics study on Se-2F3 was carried out and the value of k(cat)/K(m) (H(2)O(2)) was found to be 2.11 x 10(7) M(-1) min(-1) which was supposed to be one of the highest among the known catalytic antibodies. The data of association constants and glutathione peroxidase activities of these catalytic antibodies and the steady-state kinetics of Se-2F3 showed that the method might be a remarkably efficient one for generating catalytic antibodies with glutathione peroxidase activity.  相似文献   

7.
Mouse antibodies are increasingly used as primary antibodies for immunocytochemistry as more mouse monoclonal antibodies are being produced. The localisation of these antibodies by the PAP technique requires mouse antiperoxidase antibody. A monoclonal antiperoxidase would obviate the limitations of production of a polyclonal mouse antiperoxidase. This paper describes the development of a mouse hybridoma producing such an antibody (MAP A6-2) and the use of this antibody to localise a number of mouse primary antibodies by the PAP technique for both light and electron microscopy. The antibodies localised include monoclonal antienkephalin and antityrosine hydroxylase. MAP A6-2 had a higher affinity in immuno-diffusion experiments and gives slightly better staining with an horse radish peroxidase of a different type from that used for immunisation. Staining was optimum with horse radish peroxidase type X whereas horse radish peroxidase type VI was used for immunisation. Also described is the production of a HAT sensitive variant cell line allowing the possibility of using this hybridoma as a parent cell line for the production of hybrid hybridomas secreting bi-specific antibodies.  相似文献   

8.
Summary Mouse antibodies are increasingly used as primary antibodies for immunocytochemistry as more mouse monoclonal antibodies are being produced. The localisation of these antibodies by the PAP technique requires mouse antiperoxidase antibody. A monoclonal antiperoxidase would obviate the limitations of production of a polyclonal mouse antiperoxidase. This paper describes the development of a mouse hybridoma producing such an antibody (MAP A6-2) and the use of this antibody to localise a number of mouse primary antibodies by the PAP technique for both light and electron microscopy. The antibodies localised include monoclonal antienkephalin and antityrosine hydroxylase. MAP A6-2 had a higher affinity in immuno-diffusion experiments and gives slightly better staining with an horse radish peroxidase of a different type from that used for immunisation. Staining was optimum with horse radish peroxidase type X whereas horse radish peroxidase type VI was used for immunisation. Also described is the production of a HAT sensitive variant cell line allowing the possibility of using this hybridoma as a parent cell line for the production of hybrid hybridomas secreting bi-specifie antibodies.  相似文献   

9.
The alterations in the catalytic activity of the horseradish peroxidase after its interaction with antibodies against this enzyme have been studied in buffered solution and in reversed Aerosol OT (AOT) micelles in heptane. The antibodies were obtained by immunizing the rabbits with electrophoretically homogeneous enzyme and were purified by affinity chromatography. In the AOT micelles and mixed micelles containing AOT and Triton X-45, the enzyme interacted with antibodies very rapidly (in less than 5 min), i.e. the micelles did not hinder effective interaction between the enzyme and antibodies. The decrease in the peroxidase catalytic activity upon its interaction with antibodies in a micellar medium was determined by [H2O]/[AOT] ratio, pH and molarity of polar nucleus, as well as by the initial concentration of antibody. In buffered solutions, the decrease n the peroxidase activity of the enzyme--antibody complex was only weakly dependent on pH and molarity of a buffer solution.  相似文献   

10.
The effects of monoclonal antibodies to bovine and Paracoccus denitrificans cytochromes c (Kuo, L.M. and Davies, H.C. (1983) Mol. Immunol. 20, 827-838) in the reactions of the cytochromes c with cytochrome c oxidase, reductase and peroxidase were studied. Spectrophotometric assays were employed, under conditions where binding of cytochrome c to the enzymes appears to be rate-limiting. Less than stoichiometric amounts of antibodies to P. denitrificans cytochrome c added to the cytochrome rendered some of it nonoxidizable or nonreducible by the P. denitrificans membrane-bound electron transport system and decreased the rate constant with the remaining cytochrome c. The antibodies appear to affect both electron transport reactions (blocking effects) with the oxidase and reductase and binding effects (effects on rate constants) and to distinguish between the two. Different ratios of antibody site to cytochrome c gave different extents of blocking of the reductase as compared with the oxidase reaction. Differences were also apparent in the effect of these antibodies on the reaction of yeast peroxidase and the oxidase with the P. denitrificans cytochrome c. Antibodies to bovine and P. denitrificans cytochromes c had considerably less effect on the reactions of the bovine cytochrome with bovine oxidase and reductase. One antibody was inhibitory to the oxidase reaction with bovine cytochrome c, but not to that with the reductase. Also, an antibody which inhibited the oxidase reaction had no effect on the reaction with yeast peroxidase. The data give evidence that the interaction areas on cytochrome c for oxidase and reductase and peroxidase are not identical, although they may be nearby.  相似文献   

11.
Tyroglobulin and thyroid peroxidase antibodies have been estimated in patients with thyroid autoimmune diseases. In a group of 109 patients with Hashimoto's thyroidities 85.53% and 78.89% were positive for Tyroglobulin antibodies and anti-TPO antibodies respectively. The anti-Tg antibodies has not been detected in 14.67% and anti-TPO in 21.1% patients. Both antibodies have not been detected in 1.83% of patients. In a group of 79 patients with Graves' disease 62.02 and 91.13% were positive for anti-Tg and anti-TPO antibodies respectively. The anti-Tg antibodies has not been detected in 37.97% and anti-TPO in 8.66% patients. Both antibodies have not been detected in one patients with exophtalmos (1.26%). Our results indicate that anti-tyroglobulin antibodies should be estimated only in patients suspected for thyroid autoimmune disease and negative for thyroid peroxidase antibodies.  相似文献   

12.
The need for peroxidase purification is stressed as a requirement for comparative studies on isoenzyme structure as well as for detailed investigations on biosynthesis. A single cationic protein possessing the major peroxidase activity was isolated from the medium in which peanut cells had grown. The antibodies raised against this pure protein were employed as a probe to study the site of synthesis of peroxidase in the cell as well as the proportion of total synthesized protein which was peroxidase. Structural studies on the purified isoenzymes suggest the presence of three gene loci for peroxidase in cultured peanut cells. The results are discussed together with potential assays for induction of this enzyme and the relationship to cell development.  相似文献   

13.
Batches of rabbit anti-human immunoglobulin G antibodies were labeled either with horseradish peroxidase, using the two-step glutaraldehyde method or the periodate method, or with fluorescein isothiocyanate (FITC). The peroxidase conjugates were isolated by chromatography using two different gel types. The five types of conjugates thus obtained were standardized to the same amount of rabbit immunoglobulin G. The antibody activity, as estimated by means of single radial immunodiffusion and passive hemagglutination, and the enzyme activity, determined with orthodianisidine, were compared. The ultimate dilutions and absolute amounts of the five conjugates giving positive reactions were determined in direct and indirect immunohistochemical tests, using both cryostat sections of skin and the agarose bead model system. It appeared that during the peroxidase conjugation procedures there was a considerable loss of abtibody and enzyme activity, whereas in the FITC conjugation procedure the antibody activity remained intact. Neverthe less, peroxidase conjugates prepared with glutaraldehyde still gave positive staining reactions in equal or somewhat higher dilutions than the fluorescin conjugate did. The peroxidase conjugates prepared with periodate could not be diluted to the same extent. For the detection of antibodies by indirect immunohistochemical methods, the peroxidase conjugate, prepared with glutaraldehyde, was comparable to the FITC conjugate. The peroxidase conjugate, prepared with periodate, was less effective.  相似文献   

14.
A comparative study on tyrosine oxidation was made with a pure cationic and anionic peroxidase from peanut cell culture medium. The results showed that both isozymes possessed almost identical capacity to oxidize tyrosine to dityrosine, isodityrosine and polytyrosine with the main difference being the pH optimum (pH 4 for the anionic and pH 7 for the cationic isozyme). Variation of reaction time after 1.5 h incubation had little effect on the quantity and quality of the oxidation products. On the other hand, increase of enzyme units correspondingly increased tyrosine-oxidation. The removal of heme and carbohydrate moieties from the holoenzyme arrested the reaction thereby suggesting the role played by these moieties in stabilizing the active site of peroxidase isoenzymes. Isolated cell wall extracts catalyzed the tyrosine-oxidation equally well as the purified peroxidase. Even though polyclonal antibodies against anionic peroxidase inhibited the in vitro tyrosine reaction they did not affect the tyrosine oxidation by the cell walls, while the cationic antibodies did.Abbreviations A.PRX anionic peanut peroxidase - C.PRX cationic peanut peroxidase - PcAb polyclonal antibodies - ELISA enzyme-linked-immuno-sorbent-assay - TFMS trifluoromethane sulfonic acid  相似文献   

15.
The results of the preparation of peroxidase conjugates on the basis of the Fab-fragment of rabbit antivaccinal serum IgG and pure antirabbit IgG are presented. Peroxidase conjugates prepared on the basis of highly purified antibodies have been found (in vaccine virus-infected cell cultures) to ensure greater reliability of the immunoperoxidase method due to the decrease of nonspecific reactions registered by the control test system. This allows recommending peroxidase conjugates prepared on the basis of higher purified antibodies for use in diagnostic tests.  相似文献   

16.
A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.  相似文献   

17.
Two indirect methods involving enzyme-labeled antibodies were used to demonstrate simultaneously two distinct tissue antigens in the same histologic section without a need for antigen-antibody dissociative procedures. Sections of rat pituitary gland were incubated with rabbit anti-rat luteinizing hormone followed by goat anti-rabbit gamma-globulin conjugated to horseradish peroxidase. The same sections were then further incubated with monkey anti-rat growth hormone followed by goat anti-monkey gamma-globulin conjugated to glucose oxidase. Antigenic luteinizing hormone was subsequently localized with hydrogen peroxide-3,3'-diaminobenzidine as substrate for peroxidase, and growth hormone was localized with a glucose-phenazine methosulfate-nitroblue tetrazolium mixture as a substrate for glucose oxidase. The method relies on the availability of specific primary antibodies raised in different animal species in addition to corresponding specific secondary antibodies linked covalently to separate enzymes.  相似文献   

18.
Direct comparisons are made between covalently linked streptavidin and silver ion coated microplates. Both coatings can immobilize biotinylated molecules. Silver ion coated microplate wells can immobilize 1.8 times higher amounts of biotin labeled horseradish peroxidase. The quantitation range and capacity for the capture of horseradish peroxidase using biotin labeled horseradish peroxidase are also greater for silver ion coated microplates. Approximately twice as many anti-horseradish peroxidase antibodies can be immobilized per well using silver ion coated microplates. Higher capacities are presumed to be due to the smaller footprint of silver ions as compared to streptavidin. A direct comparison between the two coatings for a beta-galactosidase ELISA showed that while the silver ion coated microplates gave higher readings, the streptavidin coated microplates exhibited smaller well-to-well variation. However, higher well to well variation for the silver microplates is attributed to the high density of anti-beta-galactosidase antibodies on the microplates and the weak binding of clone GAL-13 to beta-galactosidase, rather than the silver coating. These studies suggest silver ion coated microplates are a desirable alternative to streptavidin plates for quantitative immunoassays.  相似文献   

19.
Immobilization of anti-horseradish peroxidase on glyoxyl-agarose proceeds rapidly, and after the immobilization, it was found that the antibody captured almost the same amount of peroxidase than the free antibody. After boiling the antibodies in the presence of SDS and mercaptoethanol, more than 95% of the immobilized antibodies presented the four subunits attached to the support.The reduction of the preparation converts the glyoxyl groups into very hydrophilic and inert hydroxyl-groups. That way, the final support was fully unable to adsorb any protein under any condition, and the only adsorbed proteins on the immobilized antibody are these recognized by the antibody. The immobilized antibody maintained intact their capacity to capture peroxidase after 20 weeks of storage at 4 °C.The high functionality of the immobilized antibody and the fully inert surface suggest that this technique may be a very suitable one to immobilize antibodies for biosensor design or immuno-chromatographic matrices.  相似文献   

20.
By using three different linkage methods with carbodiimide, glutaraldehyde and periodite, immunoenzyme conjugates of beta-lactamase from Bacillus licheniformis 749/c and horse radish peroxidase with human antibodies to HIV-1 were prepared. The human antibodies were purified by the affinity procedure on Protein-A-Sepharose 6B. The conjugates were tested in a solid phase immunoenzymatic system for the HIV-1 antigen. It was shown that the conjugates prepared by the carbodiimide linkage method had the highest titer, the beta-lactamase conjugate being superior by its titer to the respective peroxidase conjugate. In the lyophilized state the conjugates prepared with the carbodiimide linkage method were stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号