首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

2.
Energetics of Active Transport Processes   总被引:13,自引:3,他引:10       下载免费PDF全文
Discussions of active transport usually assume stoichiometry between the rate of transport J+ and the metabolic rate Jr. However, the observation of a linear relationship between J+ and Jr does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J+ and Jr linear functions of the electrochemical potential difference, -X+, and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Δψ)I=0 and the natural limits, level flow (J+)X+=0, and static head X0+ = (X+)J+=0. With high degrees of coupling -X0+/F approaches the electromotive force ENa (Ussing); -X0+/F cannot be identified with ((RT/F) ln f)X+=0, where f is the flux ratio. The efficiency η = -J+X+/JrA is of significance only when appreciable energy is being converted from one form to another. When either J+ or -X+ is small η is low; the significant parameters are then the efficacies εJ+ = J+/JrA and εX+ = -X+/JrA, respectively maximal at level flow and static head. Leak increases both J+ and εJ+ for isotonic saline reabsorption, but diminishes -X0+ and εX. Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows.  相似文献   

3.
1. Evolutionary changes in the structure of an enzyme that provide an increase in its Km value are considered. Provided that Km increases as a result of increases in the forward rate constants of the catalysis relative to the reverse rate constants, the enzyme catalyses the conversion of a fixed concentration of its substrate more rapidly when its structure provides that Km>[S] than when Km<[S]. 2. Catalytic efficiency of enzymes is discussed in terms of the simplest plausible model, the Haldane [(1930) Enzymes, Longmans, London] reversible three-step model: [Formula: see text] The rate equation for the forward reaction of this model (formation of P) may be written in the simple form: [Formula: see text] Keq. is the equilibrium constant (=[P]eq./[S]eq.), and kcat.=V/[E]T, where [E]T is the total enzyme concentration. 3. To assess the effectiveness of an enzyme, it is necessary only to determine the extent to which the constraints of a particular kinetic mechanism permit v2 (v when Km»[S]) to approach vd (the diffusion-limited rate). 4. The value of the optimal rate of catalysis (vopt., the maximal value of v2) is dictated by the equilibrium constant for the reaction, Keq.; v2=vd/a, where [Formula: see text] when k+1 is assumed equal to k−3, and vopt.=vd/amin.. When Keq.≥1, it is necessary that k+2»k−1 for a to take its minimum value, amin.; when Keq.«1, it is necessary only that k+2»Keq.·k−1, i.e. a can equal amin. even if k+2<k−1. When Keq.»1, vopt.=vd; when Keq.=1, vopt.=vd/2, and when Keq.«1, vopt.=Keq.·vd. 5. The analysis, together with predicted effects of evolutionary pressure, suggests that in practice the rates of the fastest enzyme-catalysed freely reversible reactions might be expected to be lower than the value of k+1[E]T[S] by about an order of magnitude, particularly if Keq.<1. 6. The existing literature suggests that, in general, appropriate values of Km have evolved for the provision of high rates of catalysis but that many values of kcat. are not large enough to provide optimal rates of catalysis unless the value of k+1 in vivo is lower than its value in free solution.  相似文献   

4.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

5.
This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl and Mtotal, but Llower did not. Subjects hardly changed Llower under environmental comfort conditions between March and October. This indicates that each of the Tchest, Mtotal, and Lupper was a factor in predicting Icl. Tinnermost might also be a more influential factor than the clothing microclimate temperature.  相似文献   

6.
As a prerequisite to studying the genetics and breeding of chasmogamous and cleistogamous flowers, a preliminary experiment was performed to estimate the extent of cross-pollination in cotton varieties and hybrids. Vicinism estimates varied from 0.53 to 15.36%, i.e., the proportion of cross-pollination was relatively high, leading to a biological contamination. As a result of such contamination, genetic collection lines and varieties lose genetic homogeneity and become heterozygous and genetically heterogeneous. The genetic control of the flower type was studied in the Gossipium hirsutum L. × G. barbadense L. interspecific hybrids, and phenotypic segregation of the 3: 1 and 15: 1 types with monogenic (3: 1) and digenic (15: 1) differences of noncumulative polymerization was observed. The corresponding types of genotypic segregation were 1: 2: 1 (1Cg 1 Cg 1 cg 2 cg 2 : 2Cg 1 cg 1 cg 2 cg 2 : 1cg 1 cg 1 cg 2 cg 2 ) and 1: 2: 2: 4: 1: 2: 1: 2: 1 (1) Cg 1 Cg 1 Cg 2 Cg 2 -1; (2) Cg 1 Cg 1 cg 2 cg 2 -2; (3) Cg 1 cg 1 Cg 2 Cg 2 -2; (4) Cg 1 cg 1 Cg 2 cg 2-4; (5) Cg 1 Cg 1 cg 2 cg 2 -1; (6) Cg 1 cg 1 cg 2 cg 2 -2; (7) cg 1 cg 1 Cg 2 Cg 2-1; (8) cg 1 cg 1 Cg 2 cg 2 -2; (9) cg 1 cg 1 cg 2 cg 2 -1. Genotypes (1)–(8) had chasmogamous flowers, while double-recessive genotype (9) had cleistogamous flowers. Based on this, genotypes with individual phenotypic expression were identified in F2, and their correlation with the most important morphological, biological, and agricultural features was studied. Special attention was paid to the productivity of hybrid plants intended for use in breeding to obtain intensive varieties. The study made it possible to isolate forms, families, genetic collection lines, and varieties with isogenic or nonisogenic determination of these characters and chasmogamous and cleistogamous flowers of G. hirsutum L. and G. barbadense L. prototypes by using original methods to examine the two types of flowers; the methods do not have analogs in cotton breeding worldwide.  相似文献   

7.
Most cultivars of Japanese pear (Pyrus pyrifolia Nakai) exhibit gametophytic self-incompatibility controlled by a single S-locus with multiple S-haplotypes. A self-compatible (SC) cultivar, ??Osanijisseiki?? (S 2 S 4 sm ), arising by a bud mutation of ??Nijisseiki?? (S 2 S 4 ), has a stylar-part mutant S 4 sm -haplotype, which lacks the pistil S 4 gene, which is the S 4 -RNase gene. To efficiently breed SC cultivars, we selected ??Nashi Chuukanbohon Nou 1 Gou?? (??NCN1??) harboring homozygous S 4 sm from a self-progeny of Osanijisseiki and crossed it with ??Okusankichi?? (S 5 S 7 ), ??Hakkou?? (S 4 S 5 ), or ??Ri-14?? (S 1 S 2 ). Fruit set (%) was compared after self-pollination of the trees in the three progenies. All trees derived from the three progenies were predicted to be SC, except for the S 4 S 4 sm trees in the progeny of NCN1 × Hakkou. However, S 1 S 4 sm trees in the progeny of NCN1 × Ri-14 proved to be self-incompatible (SI). The pollen from Osanijisseiki was incompatible with ??Doitsu?? (S 1 S 2 ), but that from Nijisseiki was compatible, suggesting a possibility that the S 4 sm pollen was rejected by S 1 -harboring pistils. This possibility was clarified by crossing the pollen from NCN1 (S 4 sm S 4 sm ) to Doitsu, ??Imamuraaki?? (S 1 S 6 ), or ??Hougetsu?? (S 1 S 7 ), all of which proved incompatible. On the other hand, S 4 sm pollen was accepted by pistils harboring the S 2 , S 3 , S 5 , S 6 , S 7 , S 9 , and S k haplotypes. The dual recognition of S 1 and S 4 pistils by S 4 sm pollen can be attributed to a mutation of the pollen S 4 gene(s).  相似文献   

8.
Coiling of beta-pleated sheets   总被引:4,自引:0,他引:4  
To form strongly twisted β-sheets, strands have to be coiled as well as twisted (Nishikawa &; Scherga, 1976). I show that strands coil in the appropriate right-handed direction if their main-chain torsion angles fulfil the following conditions: ψi ? ?φi + 1, ψi + 1 > ?φi + 2, ψi + 2 ? ?φi + 3, ψi + 3 > ?φi + 4…Lactate dehydrogenase, pancreatic trypsin inhibitor, thermolysin and concanavalin A contain strongly twisted β-sheets and in each case the strands are coiled by their φ, ψ values fulfilling these conditions.  相似文献   

9.
10.
11.
12.
Phthalic anhydride has been detected spectrophotometrically in the hydrolysis of phthalamic acid and N-phenylphthalamic acid in solutions which were made up to 5 M with sodium perchlorate. In solutions of lower ionic strength the variation of kobs with acid concentration follows the equation, kobs=(k1 + k2 [H3O+])/(1 + Ka/[H3O+]), and the values of k1 and k2 are both enhanced. The p values for the variation of k1 and k2 with the aryl group for the hydrolysis of N-arylphthalamic acids are ?1.23 and ?0.94. A mechanism involving nucleophilic catalysis by the carboxyl group in which breakdown of the tetrahedral intermediate is rate-limiting was proposed.  相似文献   

13.
The mutual relationship between the water potential (γ w ), its components, namely the osmotic potential (γ s ) and the pressure potential (γ p ), and the water saturation deficit (ΔW sat ) were determined in the leaves of different insertion levels. During the water stress development in kale plants induced by decreasing soil moisture theγ w decreased, parallely in all the leaves but the same decrease ofγ q was accompanied by the highest decrease of theγ p , probably due to the accumulation of osmotically active solutes, and the lowest decrease ofγ p in the upper leaves and with the lowest decrease ofγ s and the highest decrease ofγ p in the lower leaves. Also the corresponding values of the ΔW sat were always lower in the upper than in the middle and lower leaves. Thus the upper leaves wilted at more negative values ofγ w than the other leaves. On the contrary, during the wilting of the cut off leaves the relationship betweenγ w and ΔW sat in the upper, middle and lower leaves was practically the same. The very slightly higher decrease ofγ s in the upper leaves in comparison with the other leaves was compensated by a lower deerease of theirγ p . These changes in the ratios ofγ w ,γ s ,γ p and ΔW sat with the leaf insertion levels enabled the preference of the upper leaves in retaining the necessary water supply during the wilting of plantsin situ.  相似文献   

14.
Ribulose 1,5-bisphosphate carboxylase/oxygenase has been reported to occur in multiple forms in mung bean (Phaseolus aureus) using Sephadex G-200 chromatography. We have isolated this enzyme by identical methodology. The profile from Sephadex G-200 chromatography shows only one peak in contrast to the previous report and we find no evidence to corroborate the conclusions. Where Vc, Vo and Kc, Ko represent Vmax and Michaelis constants, respectively, the constant VcKo/VoKc for the single form is 70 at 40 μM CO2 and 1200 μM O2.  相似文献   

15.
(1) The kinetic parameters of rat pancreatic adenylate cyclase were evaluated, using GTP, p[NH]ppG or GTPγS as nucleotide activator, cholecystokinin as peptide hormone, and GDPβS and dibutyryl cyclic GMP as inhibitors of guanosine triphosphate and CCK-8, respectively. The time courses of activation and the degree of activation at steady state (EA/ETOT) were compatible with a simple two-state model of activation-deactivation based on a pseudo-monomolecular activation process (rate constant k+2, and a deactivation process (rate constant koff) that included, depending on the activating nucleotide, the hydrolysis of GTP (rate constant k2) and/or the dissociation of the intact nucleotide (rate constant k?1), so that EA/ETOT = k+1/(k+1 + k2 + k?a). (2) The hormone CCK-8 increased the value of k+1 with GTP dose-dependently, from 0.2 to 10.9 min?1. The value of k?1 increased 0.01 to 0.3 min?1 but the value of k2 was unaltered at 7 min?1, so that EA/ETOT increased 15-fold, from 4% to 61%. (3) A cholera toxin pretreatment at 30 μg/ml allowed also a large increase in EA/ETOT with GTP (up to 51%) but the underlying mechanism was different. It consisted of a 14-fold decrease in the koff value of the GTP-activated enzyme (from 7 min? to 0.5 min?1) that corresponded to a reduction in GTPase activity. When testing the system with p[NH]ppG, two added effects of the cholera toxin pretreatment were observed: a 4-fold increase in the value of k+1 (from 0.2 to 0.8 min?1) and the occurrence of a significant 0.3 min?1 value for k?1.  相似文献   

16.
《Inorganica chimica acta》1986,121(2):167-174
The reaction of 2,3-tri with CrCl3·6H2O1, dehydrated in boiling DMF, results in the formation of mer-CrCl3(2,3-tri) and anation of hydrolysed solutions of mer-MCl3(2,3,-tri) (M=Co, Cr) with 6 M HCl containing HClO4, forms trans-dichloro- mer-[MCl2(2,3-tri)(OH2)]ClO4·H2O (M=Cr, Co; I, II). trans-Dinitro-mer-[Co(NO2)2(NH3)(2,3-tri)] ClO4 crystallises from the reaction between mer-Co(NO2)3(2,3-tri) and aqueous 7 M ammonia, on addition of NaClO4·H2O, and trans-dichloro-mer-[CoCl2(NH3)(2,3-tri)]ClO4 (III) can be isolated by treatment of the dinitro with 12 M HCl. Reaction of mer-CoCl3(2,3-tri) with C2O42, followed by addition of aqueous NH3 and NaClO4·H2O results in the isolation of racemic mer-[Co(ox)(NH3)(2,3-tri)]ClO4· H2O. This complex was resolved into its enantiomeric forms and treatment of these with SOCl2/MeOH/ HClO4 gave the chiral forms of trans-dichloro-mer- [CoCl2(NH3)(2,3-tri)]ClO4 (R or S at the see-NH center). The rates of loss of the first chloro ligand from these dichloro complexes have been measured spectrophotometrically in 0.1 M HNO3 over a 15 K temperature range to give the following kinetic parameters; (I) kH(298)=7.25 × 10−5 s−1, Ea=78.5 kJ mol−1, δS298#=69 J K−1 mol−1; (II) kH(298)=4.00 × 10−3 s−1, Ea=89.9, δS298#= +87.5; (III) kH(298)=3.09 × 10−4 s−1, Ea=103, δS298#=+27. Treatment of the dichloro cations with Hg2+/HNO3 results in the generation of mer- M(2,3-tri)(OH2)33+ (M=Cr, Co; IV, V) and trans- diaqua-mer-Co(NH3)(2,3-tri)(OH2)23+ (VI). The Co(III) cations isomerise to the fac configuration with (V) Kisom(298) μ=1.0 M)=2.97 × 10−5 s−1, Ea=115, δS298#=+46. (VI) Kisom(298) (μ=1.0 M)=4.13 × 10−5 s−1, Ea=113, δS298#=+52.  相似文献   

17.
The rapidly inactivating (INaf) and noninactivating Na+ currents (INa(NI)) were characterized in NG108-15 neuronal cells differentiated with dibutyryl cyclic AMP in this study. Standard activation and inactivation protocols were used to evaluate the steady-state and kinetic properties of the INaf present in these cells. The voltage protocols with a slowly depolarizing ramp were implemented to examine the properties of INa(NI). Based on experimental data and computer simulations, a window component of the rapidly inactivating sodium current (INaf(W)) was also generated in response to the slowly depolarizing ramp. The INaf(W) was subtracted from INa(NI) to yield the persistent Na+ current (INa(P)). Our results demonstrate the presence of INa(P) in these cells. In addition to modifying the steady-state inactivation of INaf, ranolazine or riluzloe could be effective in blocking INaf(W) and INa(P). The ability of ranolazine and riluzole to suppress INa(P) was greater than their ability to inhibit INaf(W). In current-clamp recordings, current-induced voltage oscillations were applied to elicit action potentials (APs) through a gradual transition between spontaneous depolarization and upstroke. Ranolazine or riluzole at a concentration of 3 μM then effectively suppressed the AP firing generated by oscillatory changes in membrane current. The data suggest that a small rise in INa(NI) facilitates neuronal hyper-excitability due the decreased threshold of AP initiation. The underlying mechanism of the inhibitory actions of ranolazine or riluzole on membrane potential in neurons or neuroendocrine cells in vivo may thus be associated with their blocking of INa(NI).  相似文献   

18.
Amino acid hydrophobicity parameters, Ghp log P (partition coefficient) values, free energies of solution, Gsol and hydration numbers, are well correlated by equations derived from the relationship OX = X + IX + X + IiX + H1nHX + H2nnX + b0 where O is the quantity correlated; X denotes the amino acid side chain; α is a polarizability parameter; σI, a localized electrical effect parameter; ν, a steric parameter; i, an indicator variable which accounts for an ionic X ; nH and nn the number of OH or NH bonds and of full nonbonding orbitals in X, respectively, and b0 is the intercept. The equation is based on the assumption that Δhp log P and ΔGsol are all functions of the difference in intermolecular forces between the amino acid and some medium, and the amino acid and water. The parameters were chosen to model the intermolecular forces of interest.Generally the most important factor is αx. This is followed by ν, i, and nH. Least important is σI. ΔGsol depends on α, nH and nn. Hydration numbers depend on i, nH and nn. The hydrophobicity of amino acid side chains is the result of a preference for a nonpolar medium as a increases and for a polar medium as i, nH and σI increase. It is quantitatively accounted for by the model, and no special “hydrophobic bond” need be involved. The results show that log P values for amino acids are composite quantities whose composition is variable.  相似文献   

19.
《Inorganica chimica acta》1988,150(1):81-100
The (NH3)5CoOC(NH2)23+ ion is consumed in water according to the rate law k(obs.) = k1 + k2[OH], where k1 = 4.0 × 10−5 s−1 and k2 = 14.2 M−1 s−1 (0–0.1 M [OH];μ = 1.1 M, NaClO4, 25 °C). A hitherto unrecognized intramolecular O- to N- linkage isomerization reaction has been detected. In strongly acid solution only aquation to (NH3)5CoOH23+ is observed, but in 0.1–1.0 M [OH], 7% of the directly formed products is the urea-N complex (NH3)5CoNHCONH22+ which has been isolated. In the neutral pH region a much greater proportion (25%) of the products is the urea-N species. These results are interpreted in terms of an urea-O to urea-N linkage isomerization reaction competing with hydrolysis for both spontaneous (k1) and base-catalyzed (k2) pathways; the rearrangement is not observed in strongly acidic solution (pH ⩽ 1) because the protonated N-bonded isomer (pKa ≈ 3) is unstable with respect to the O-bonded form. The appearance of the isomerization pathway as the pH is raised in the 0–6 region is commensurate with a rate increase which cannot be attributed to a contribution from the base catalysis term k2[OH]. It is argued that this observation establishes, for the spontaneous pathway, that hydrolysis and linkage isomerization are separate reaction pathways — there is no common intermediate. The product distribution and rate data lead to the complete rate law, k(obs.) = k1 + k2[OH] = (ks + kON) + (kOH + kON) [OH] for the reactions of the O-bonded isomers, where ks, kOH are the specific rates for hydrolysis, and kON, kON are the specific rates for O- to N-linkage isomerization, by spontaneous and base-catalyzed pathways respectively; kON = 1.3 × 10−5 s−1 and kON = 1.1 M−1 s−1 (μ = 1.0 M, NaClO4, 25 °C). The O- to N- linkage isomerization has been observed also for complexes of N-methylurea, N,N-dimethylurea and N-phenylurea, but not for the N,N′-dimethylurea species. There is an approximately statistical relationship among the data for −NH2 capture (versus H2O), while −NHR and −NR2 do not compete with water as nucleophiles for Co(III) in either the spontaneous or base-catalyzed hydrolysis processes. For each urea-O complex, O- to N-isomerization is a more significant parallel reaction in the spontaneous as opposed to the base-catalyzed pathway. This is interpreted as being indicative of more associative character in the spontaneous route to products, a conclusion supported by other evidence. Some activation parameter data have been recorded and the effect of the N-substitution on the rates of solvolysis (H2O, Me2SO) is discussed. The urea-N complexes have been isolated as their deprotonated forms, [(NH3)5CoNHCONRR′](ClO4)2·xH2O (R,R′ = H, CH3). They are kinetically inert in neutral to basic solution but in acid they protonate (H2O, pKa 2–3; μ = 1.0 M, 25 °C) and then isomerize rapidly back to their O-bonded forms. Some solvolysis accompanies this N- to O-rearrangement in H2O and Me2SO. Specific rates and activation parameters are reported. The kinetic data follow a rate law of the form kNO(obs.) = (k + kNO)[H+]/(Ka + [H+]) and the active species in the reaction is the protonated form; k, kNO are the specific rates for hydrolysis and isomerization, respectively. Proton NMR data establish that the site of protonation (in Me2SO) is the cobalt-bound nitrogen atom. For the unsubstituted urea species (NH3)5CoNH2CONH23+, diastereotopic exo-NH2 protons arising from restricted rotation about the CN bond are observed. The relevance to the mechanism of the linkage isomerization process is considered. 13C and 1H NMR and electronic absorption spectral data are presented, and distinctions between linkage isomers and the solution structures (electronic and conformational) are discussed. The urea-N/urea-O complex equilibrium is governed by the relation KNO(obs.) = KNO[H+]/[H+](Ka), where KNO is the equilibrium constant = [(NH35Co(urea-O)3+]/[(NH3)5Co(urea-N)3+]. Values for KNO(=kNO/kON = 260 and pKa ≈ 3 for the NH2CONH2 system are consistent with the stability of the N-isomer in feebly acidic to basic solution (e.g. pH 6, KNO(obs.) = 2.6 × 10−2) and instability in acid solution (e.g. pH 1, KNO(obs.) = 240). The equilibrium data for this and other urea complexes of (NH3)5Co(III) are contrasted with the result for the analogous Rh(III)NH2CONH2 system KNO ≈ 1).  相似文献   

20.
Karyotypes, sex chromosome systems and meiotic characteristics are reported for ten spider species belonging to the families Gnaphosidae, Philodromidae, Salticidae, Oxyopidae and Sicariidae by using standard Giemsa staining. The male diploid numbers (2n) and sex chromosome systems are as follows: Berinda hakani 2n = 22 (X1X2), Berinda ensigera 2n = 22 (X1X2), Trachyzelotes lyonneti 2n = 22 (X1X2), Trachyzelotes malkini 2n = 22 (X1X2), Zelotes caucasius 2n = 22 (X1X2) (Gnaphosidae); Thanatus pictus 2n = 28 (X1 X2), Tibellus macellus 2n = 24 (X1 X2) (Philodromidae); Neon reticulatus 2n = 21 (X0) (Salticidae); Peucetia virescens 2n = 28 (X1X2) (Oxyopidae) and Loxosceles rufescens 2n = 21 (X1 X2Y) (Sicariidae). All species have monoarmed chromosomes with the exception of L. rufescens that has biarmed (metacentric and submetacentric) chromosomes. The obtained data are the first results for the genera Berinda, Trachyzelotes and Neon. Additionally, with the exception of L. rufescens, all species are being chromosomally analyzed for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号