首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Maximum quantum yields (QY) of photosynthetic electron flows through PSI and PSII were separately assessed in thylakoid membranes isolated from leaves of Cucumis sativus L. (cucumber) that had been chilled in various ways. The QY(PSI) in the thylakoids prepared from the leaves treated at 4° C in moderate light at 220 mol quanta·m–2·s–1 (400–700 nm) for 5 h, was about 20–30% of that in the thylakoids prepared from untreated leaves, while QY(PSII) decreased, at most, by 20% in response to the same treatment. The decrease in QY(PSI) was observed only when the leaves were chilled at temperatures below 10° C, while such a marked temperature dependency was not observed for the decrease in QY(PSII). In the chilling treatment at 4° C for 5 h, the quantum flux density that was required to induce 50% loss of QY (PSI) was ca. 50 umol quanta·m–2·s–1. When the chilling treatment at 4° C in the light was conducted in an atmosphere of N2, photoinhibition of PSI was largely suppressed, while the damage to PSII was somewhat enhanced. The ferricyanide-oxidised minus ascorbate-reduced difference spectra and the light-induced absorbance changes at 700 nm obtained with the thylakoid suspension, indicated the loss of P700 to extents that corresponded to the decreases in QY(PSI). Accordingly, the decreases in QY(PSI) can largely be attributed to destruction of the PSI reaction centre itself. These results clearly show that, at least in cucumber, a typical chillingsensitive plant, PSI is much more susceptible to aerobic photoinhibition than PSII.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - P700 primary electron donor of PSI - PPFD photosynthetically active photon flux density - QY quantum yield We are grateful to invaluable comments by Prof. S. Katoh, K. Hikosaka and the members of our laboratory. We also thank A. Aoyama for technical assistance. This work was partly supported by the grants from the Ministry of Education, Science, and Culture, Japan, to I. Terashima (#03740342 and #04640621).  相似文献   

2.
Nitrate reductase was found in leaves of apricot Prunus armeniaca, sour cherry P. cerasus, sweet cherry P. avium, and plum P. domestica, but not in peach P. persica, from trees grown in sand culture receiving a nitrate containing nutrient solution. Nitrate was found in the leaves of all species. Nitrate and nitrate reductase were found in leaves of field-grown apricot, sour cherry, and plum trees. The enzyme-extracting medium contained insoluble polyvinylpyrrolidone, and including dithiothreitol or mercaptobenzothiazole did not improve enzyme recovery. Inclusion of cherry leaf extract diminished, and peach leaf extract abolished, recovery of nitrate reductase from oat tissue. Low molecular weight phenols liberated during extraction were probably responsible for inactivation of the enzyme. The enzyme from apricot was two to three times as active as from the other species. Both nicotine adenine diphosphopyridine nucleotide and flavin mononucleotide were effective electron donors. The enzyme was readily induced in apricot leaves by 10 mm nitrate supplied through the leaf petiole.  相似文献   

3.
Microbial lipolysis at low temperatures.   总被引:6,自引:3,他引:3       下载免费PDF全文
It was found that lipase production during the growth of Pseudomonas fluorescens was not a function of the total number of bacteria. The optimal temperatures for bacterial growth and lipase production were determined as 20 and 8 degrees C, respectively. The lipolytic activity was studied in emulsions of olive oil at temperatures ranging from +8 to -30 degrees C. After an initially rapid lipolysis, the reactions retarded at different levels depending on storage temperature. Transference to a higher temperature resulted in a resumed lipolysis. Also, at low temperatures, lipolysis was studied as a function of water activity and was found to occur in dehydrated substrates.  相似文献   

4.
The survival and development of cow eggs in the rabbit oviduct after storage at room temperature and after cooling and storage at 0-7-5 degrees C was examined. In PBS medium at room temperature 88% of Day-5 and 85% of Day-3 eggs showed normal development, but in TCM 199, 71% of Day-5 and only 49% of Day-3 eggs showed normal development. Duration of storage (1 1/2-2 hr or 6 1/2-7 1/2 hr) and cleavage stage before storage had no appreciable effect on development. Some retardation of development occurred in Day-3 eggs after 96 hr in the rabbit oviduct when compared to Day-5 eggs after 48 hr. Cooling of Day-5 and Day-6 eggs to 0-7-5 degrees C resulted in degeneration of a large proportion of eggs. Of the factors examined, storage medium (PBS or PBS+20%FCS), storage time (2 min, 24 hr) and storage temperature (0, 2, 5 or 7-5 degrees C) had little effect, but slower cooling rates tended to improve survival of eggs although the differences were not significant. More morulae (greater than 32 cells) than 8-to 24-celled eggs developed normally.  相似文献   

5.
The widely held view that in cold weather one feels colder when the atmosphere is damp than when it is dry was investigated on clothed subjects. Subjective coldness and dampness, determined by a panel of six people who walked about half a mile in the open in winter, were compared with measurements of temperature, relative humidity, and other meteorological variables. The panellists comments showed that when the weather is cold, people think it is damp when the sky is overcast, irrespective of relative humidity. However, when this factor has been allowed for there still appears to be some correlation between subjective dampness and relative humidity. Relative humidity does appear to have an effect on how cold one feels at low temperatures, but only to a limited extent, and in the opposite direction to popular belief.  相似文献   

6.
The impact of leaf vein blockage on leaf hydraulic conductance (K(L)), gas exchange (g(L)) and water potential (Psi(L)) was studied in Prunus laurocerasus L., a broad-leaved evergreen. For this purpose, leaves were measured for the three variables above, either with an intact leaf blade (controls) or with the midrib cut a third of the way up (cut a), or with the midrib cut at three different points and the first-order veins cut through near their insertion to the midrib (cut b), or with the midrib cut at 2 mm from the leaf base (cut c). All the cut surfaces were sealed with cyanoacrylate. A serial decrease of K(L) was recorded from cut a to cut c with respect to that measured for the controls, i.e. a K(L) loss of about 37% (cut a), 57% (cut b) and 87% (cut c). A positive linear relationship appeared to exist between g(L) and K(L) with a high correlation coefficient (r(2)=0.99) and a high statistical significance (P <0.01). Even under a severe drop in K(L) (as that induced by cut c), leaf water potential remained approximately constant and not statistically different from Psi(L) measured for the controls. In fact, Psi(L) ranged between -0.83 and -0.98 MPa, i.e. within the cavitation threshold of leaves in terms of the critical Psi(L) inducing a significant production of ultrasound acoustic emissions which was -0.94+/-0.09 MPa. The conclusion was that stomata were very sensitive to changes in K(L) and that stomatal closure led to the homeostatic maintenance of Psi(L) and cavitation avoidance.  相似文献   

7.
The photosynthetic rate in leaf discs (P LD) ofPrunus laurocerasus L. plants taken up from leaves of various ages was measured under constant temperature (20±0.5°C) CO2 concentration in air (0.03%) complete water saturation and irradiance (71 W m2 PhAR). TheP LD is the highest in mature leaves of the current year. The extent of depression in the second and further years depends on the degree of habitat shading. In a slightly shaded habitat (60 to 73% daily sum of photosynthetically active radiation—PhAR) it decreases by almost 50% in the second year. In a deeply shaded habitat (22.5–28.2% daily sum PhAR) the depression amounts to 31.7% in the second year in the third and fourth years to 61.7 and 73.2% respectively.  相似文献   

8.
The assembly of the 50S subunit from Escherichia coli ribosomes is initiated by two ribosomal proteins, L24 and L3. A mutant lacking the assembly-initiator protein L24 shows distinct phenotypic features (temperature sensitivity, growth rate reduced by a factor of 6 at permissive temperatures below 34 degrees C, underproduction of 50S subunits), which could be traced back to assembly effects caused by lack of L24 [Herold, M., Nowotny, V., Dabbs, E. R., & Nierhaus, K. H. (1986) Mol. Gen. Genet. 203, 281-287]. As expected, only one assembly protein was effective during in vitro assembly at nonpermissive temperatures, whereas surprisingly the restoration of active particle formation at permissive temperatures was paralleled by the reappearance of two initiator proteins. Here we analyze the initiation of assembly at permissive temperatures in the absence of L24. We demonstrate in a series of reconstitution experiments with purified proteins that the two initiator proteins are L20 and L3. Thus, L20 can replace L24 for the initiation of assembly at permissive temperatures.  相似文献   

9.
The aim of this work was to examine the effect upon photosynthetic capacity of short-term exposure (up to 10 h) to low temperatures (5° C) of darkened leaves of barley (Hordeum vulgare L.) plants. The carbohydrate content, metabolite status and the photosynthetic rate of leaves were measured at low temperature, high light and higher than ambient CO2. Under these conditions we could detect whether previous exposure of leaves to low temperature overcame the limitation by phosphate which occurs in leaves of plants not previously exposed to low temperatures. The rates of CO2 assimilation measured at 8° C differed by as much as twofold, depending upon the pretreatment. (i) Leaves from plants which had previously been darkened for 24 h had a low content of carbohydrate, had the lowest CO2-assimilation rates at low temperature, and photosynthesis was limited by carbohydrate, as shown by a large stimulation of photosynthesis by feeding glucose, (ii) Leaves from plants which had previously been illuminated for 24 h and which contained large carbohydrate reserves showed an accumulation of phosphorylated intermediates and higher CO2-assimilation rates at low temperature, but nevertheless remained limited by phosphate, (iii) Maximum rates of CO2 assimilation at low temperature were observed in leaves which had intermediate reserves of carbohydrate or in leaves which were rich in carbohydrate and which were also fed phosphate. It is suggested that carbohydrate reserves potentiate the system for the achievement of high rates of photosynthesis at low temperatures by accumulation of photosynthetic intermediates such as hexose phosphates, but that this potential cannot be realised if, at the same time, carbohydrate accumulation is itself leading to feedback inhibition of photosynthesis. This work was supported by the Agricultural and Food Research Council, UK (Research grant PG50/67) and by the Science and Engineering Reserach Council, UK. C.A.L. was supported by the British Council, by an Overseas Research Student Award and by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.  相似文献   

10.
11.
9-cis-Retro-gamma-rhodopsin (lambda max = 420 nm) was prepared from 9-cis-retro-gamma-retinal and cattle opsin. After cooling to liquid nitrogen temperature (77 K), the pigment was irradiated with light at 380 nm. The spectrum shifted to the longer wavelengths, owing to formation of a batho product. This fact indicates that the conjugated double bond system from C-5 to C-8 of the chromophoric retinal in rhodopsin was not necessary for formation of bathorhodopsin. Reirradiation of the batho product with light at wavelengths longer than 520 nm yielded a mixture composed of presumably 9- or 11-cis forms of retro-gamma-rhodopsin. These three isomers are interconvertible by light at liquid nitrogen temperature. Thus the retro-gamma-rhodopsin system is similar in photochemical reaction at 77 K to cattle rhodopsin system. Each system has its own batho product. Based on these results, it was infered that the formation of batho-rhodopsin is due to photoisomerization of the chromophoric retinal of rhodopsin and is not due to translocation of a proton on the ring or on the side chain from C-6 to C-8 of the chromophoric retinal to the Schiff-base nitrogen.  相似文献   

12.
13.
A simple method is described for dodecyl sulphate/polyacrylamide-gel electrophoresis of pH- and temperature-labile biological intermediates. The method is based on a catalyst system that works at temperatures of 2--4 degrees C and pH values of 2--4 and an appropriate buffer system containing Li+ or Tris [CH2OH--C(CH2OH)2--NH3+] instead of Na+. This system does not lead to the precipitation of 1% dodecyl sulphate.  相似文献   

14.
Honey-bee colonies exposed to temperatures between 20° C and -39° C produced less CO2 at 10° C than at higher or lower temperatures.
Zusammenfassung Honigbienenvölker wurden im Winter aus ihren Stöcken genommen und in galvanisierten Eisenbehältern (Tanks) Temperaturen zwischen 20 und -39° C ausgesetzt. Das Kohlendioxyd der aus den Behältern abgesogenen Luft wurde absorbiert und gewogen. Die CO2-Produktion sank, wenn die Temperatur von 20 auf 10° erniedrigt wurde und stieg bei niederen Temperaturen wieder an. Diese Veränderungen verliefen in umgekehrter Richtung, wenn die Temperatur erhöht wurde.
  相似文献   

15.
16.
17.
Protein structure and function at low temperatures   总被引:2,自引:0,他引:2  
Proteins represent the major components in the living cell that provide the whole repertoire of constituents of cellular organization and metabolism. In the process of evolution, adaptation to extreme conditions mainly referred to temperature, pH and low water activity. With respect to life at low temperatures, effects on protein structure, protein stability and protein folding need consideration. The sequences and topologies of proteins from psychrophilic, mesophilic and thermophilic organisms are found to be highly homologous. Commonly, adaptive changes refer to multiple alterations of the amino acid sequence, which presently cannot be correlated with specific changes of structure and stability; so far it has not been possible to attribute specific increments in the free energy of stabilization to well-defined amino-acid exchanges in an unambiguous way. The stability of proteins is limited at high and low temperatures. Their expression and self-organization may be accomplished under conditions strongly deviating from optimum growth conditions. Molecular adaptation to extremes of temperature seems to be accompanied by a flattening of the temperature profile of the free energy of stabilization. In principle, the free energy of stabilization of proteins is small compared to the total molecular energy. As a consequence, molecular adaptation to extremes of physical conditions only requires marginal alterations of the intermolecular interactions and packing density. Careful statistical and structural analyses indicate that altering the number of ion pairs and hydrophobic interactions allows the flexibility of proteins to be adjusted so that full catalytic function is maintained at varying temperatures.  相似文献   

18.
Images of chlorophyll fluorescence were used to demonstrate patchy stomatal closure at low humidities in leaves of well-watered Xanthium strumarium plants. The pattern and extent of patchy stomatal closure were shown to be different for the two surfaces of amphistomatous leaves by taking images of leaves with CO2 available to only one leaf was exposed to low humidity, patchiness was more extensive on that surface. Gas-exchange experiments were also conducted to determine the apparent photosynthetic capacity of the mesophyll (photosynthesis rate at constant ci when it was supplied with CO2 through both surfaces or through each surface alone. These experiments showed declines in the apparent photosynthetic capacity of the mesophyll at low humidities that were consistent with patchy stomatal closure on one or both surfaces. The results suggest that patchy stomatal closure can be a factor in the steady-state reponses of stomata to humidity. In amphistomatous leaves this is further complicated by the fact that patches on one epidermis may not coincide with those of the other surface.  相似文献   

19.
Effect of pH on conjugal transfer at low temperatures.   总被引:3,自引:3,他引:0       下载免费PDF全文
The inhibitory effects of nonoptimal temperature and nonoptimal pH on F-type conjugal transfer were found to be synergistic. This finding is briefly discussed in an environmental context.  相似文献   

20.
In a chilling-sensitive plant, cucumber, chilling of leaves in the light results in irreversible damage to PSI. Recent in vitro studies suggested that hydroxyl radicals, which are formed in the presence of H2O2 and reduced Fe-S centers, are involved in the PSI inhibition. We therefore examined this possibility in vivo. Chilling of leaves at 5°C in the light caused a temporary increase in H2O2 concentration, which was probably due to the net H2O2 production in vivo. The activity, measured at 5°C, of the thylakoid ascorbate peroxidase (APX), a key enzyme of the H2O2-scavenging system, was about 20% of that measured at 25°C. The isolated thylakoids retaining high thylakoid APX activity did not show light-dependent net H2O2 production at 25°C. However, at 5°C, net production of H2O2 was observed. Since the rate of electron flow to molecular oxygen in the isolated thylakoids was ca 5 mmol e? mol?1 Chl s?1 at 5°C, the H2O2-scavenging capacity was below this level. When intact leaves were illuminated at 5°C at an irradiance of 100 µmol m?2 s?1, the rate of electron transport through PSII was ca 20 mmol e? mol?1 Chl s?1 and more than 80% of QA was in the reduced state. Since thylakoids are uncoupled in cucumber leaves at 5°C in the light. ATP is not formed and energy dissipation in the form of heat is suppressed. Therefore, the electron flow to molecular oxygen would be greater than 5 mmol e? mol?1 Chl s?1. Moreover, under such conditions, components in the electron transport chain, including Fe-S centers in PSI, were probably reduced. These features indicate that, when cucumber leaves are chilled in the light, hydroxyl radicals can be produced by the Fenton reaction and cause damage to PSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号