首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme adenosine kinase (AK) plays a key role in the regulation of intracellular and extracellular concentration of adenosine (Ado), which exhibits potent hormonal activity in cardiovascular, nervous and immune systems. In view of the pharmacological effects of Ado, there is much interest in identifying inhibitors of AK, which can augment its tissue-protective effects. In this study, we have screened 1040 compounds from a chemical library of putative kinase inhibitors for their effect on purified human recombinant AK. These studies have identified 8 novel, non-nucleoside AK inhibitors. Four of these compounds (viz. 2-tert-butyl-4H-benzo[1,2,4]thiadiazine-3-thione (2759–0749); N-(5,6-diphenyl-furo[2,3-d]pyrimidin-4-yl)-propionamide (3998–0118); 3-[5,6-Bis-(4-methoxy-phenyl)-furo[2,3-d]pyrimidin-4-ylamino]-propan-1-ol (4072–2732); and 2-[2-(3,4-dihydroxy-phenyl)-5-phenyl-1H-imidazol-4-yl]-fluoren-9-one (8008–6198)), which inhibited human AK in a concentration-dependent manner in a low micromolar range (IC50 = 0.38 ∼ 1.98 μM) were further studied. Kinetic and structural studies on these compounds provide evidence that inhibition of AK by these compounds was competitive with respect to Ado and non-competitive for ATP. All of these compounds also inhibited uptake of Ado and its metabolism in cultured mammalian cells at comparable concentrations indicating their efficient cellular penetrability. These AK inhibitors, whose chemical structures differ significantly from all previously known inhibitors, provide useful lead compounds for identification of more potent but less toxic AK inhibitors that may prove useful for therapeutic purposes.  相似文献   

2.
The enzyme adenosine kinase (AK; EC 2.7.1.20) shows a dependence upon inorganic phosphate (Pi) for activity. The degree of dependence varies among enzyme sources and the pH at which the activity is measured. At physiological pH, recombinant AK from Chinese hamster ovary (CHO) cells and AK from beef liver (BL) show higher affinities for the substrate adenosine (Ado), larger maximum velocities and lower sensitivities to substrate inhibition in the presence of Pi. At pH 6.2, both BL and CHO AK exhibit almost complete dependence on the presence of Pi for activity. The data show that both enzymes exhibit increasing relief from substrate inhibition upon increasing Pi and the inhibition of BL AK is almost completely alleviated by the addition of 50 mM Pi. The affinity of CHO AK for Ado increases asymptotically from K(m) 6.4 microM to a limit of 0.7 microM upon the addition of increasing Pi from 1 to 50 mM. The concentration of Ado necessary to invoke substrate inhibition also increases asymptotically from K(i) 32 microM to a limit of 69 microM at saturating concentrations of phosphate. In the presence of increasing amounts of Pi, the maximal velocity of activity increases hyperbolically. The effect that phosphate exerts on AK may be either to protect the enzyme from inactivation at high adenosine and H(+) concentrations or to stabilize substrate binding at the active site.  相似文献   

3.

Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626–629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3Ado), neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in the first place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.  相似文献   

4.
The enzyme adenosine kinase (AK) exhibits a nearly complete dependency on the presence of pentavalent ions (PVI) such as phosphate, arsenate, and vanadate. To understand its basis, the effect of a large number of phosphorylated compounds on AK activity was examined. Several compounds, such as phosphoribosyl pyrophosphate, phosphoenol pyruvate, creatine phosphate, phosphorous acid, phosphonoformic acid, and inorganic pyrophosphate, were found to substitute for PVI in stimulating AK activity. Similar to PVI, these compounds lowered the Km of AK for adenosine. In contrast, many other structurally related compounds (i.e., phosphonoacetic acid, 2-carboxyethyl phosphonic acid, N-phosphonomethyl glycine, N-phosphonomethyl iminodiacetic acid) inhibited AK activity. These compounds seemed to compete with the activators for binding to AK. Structural comparisons of different compounds indicate that all activating compounds contain a net positive charge on the pentavalent atom (e.g., phosphorous), which should enable it to act as an acceptor for a nucleophilic group. We suggest that a phosphate (or other activator) bound near the active site participates in AK catalysis by forming a transient pentavalent intermediate with a nonbridging oxygen of the beta-phosphate in ATP. This interaction likely facilitates the transfer of gamma-phosphate from ATP to adenosine, thus accounting for the stimulating role of PVI in AK catalysis. The insight provided by these studies concerning the structural features of activators and inhibitors should also prove helpful in the design of more potent inhibitors of AK.  相似文献   

5.
Breast cancer is one of the most common cancers in the female population worldwide, and its development is thought to be associated with genetic mutations that lead to uncontrolled and accelerated growth of breast cells. This abnormal behavior requires extra energy, and indeed, tumor cells display a rewired energy metabolism compared to normal breast cells. Inorganic phosphate (Pi) is a glycolytic substrate of glyceraldehyde-3-phosphate dehydrogenase and has an important role in cancer cell proliferation. For cells to obtain Pi, ectoenzymes in the plasma membrane with their catalytic site facing the extracellular environment can hydrolyze phosphorylated molecules, and this is an initial and possibly limiting step for the uptake of Pi by carriers that behave as adjuvants in the process of energy harvesting and thus partially contributes to tumor energy requirements. In this study, the activity of an ectophosphatase in MDA-MB-231 cells was biochemically characterized, and the results showed that the activity of this enzyme was higher in the acidic pH range and that the enzyme had a Km = 4.5 ± 0.5 mM para-nitrophenylphosphate and a Vmax = 2280 ± 158 nM × h−1 × mg protein−1. In addition, classical acid phosphatase inhibitors, including sodium orthovanadate, decreased enzymatic activity. Sodium orthovanadate was able to inhibit ectophosphatase activity while also inhibiting cell proliferation, adhesion, and migration, which are important processes in tumor progression, especially in metastatic breast cancer MDA-MB-231 cells that have higher ectophosphatase activity than MCF-7 and MCF-10 breast cells.  相似文献   

6.
The aim of the present study was to investigate the effect of hyperthyroidism on the trans-sarcolemmal adenosine (Ado) flux via equilibrative and nitrobenzylthioinosine (NBTI)-sensitive nucleoside transporters (ENT1) in guinea pig atria, by assessing the change in the Ado concentration of the interstitial fluid ([Ado]ISF) under nucleoside transport blockade with NBTI. For the assessment, we applied our novel method, which estimates the change in [Ado]ISF utilizing the altered inotropic response to N6-cyclopentyladenosine (CPA), a relative stable selective agonist of A1 Ado receptors, by providing a relative index, the equivalent concentration of CPA. Our results show an interstitial A do accumulation upon ENT1 blockade, which was more extensive in the hyperthyroid samples (CPA concentrations equieffective with the surplus [Ado]ISF were two to three times higher in hyperthyroid atria than in euthyroid ones, with regard to the negative inotropic effect of CPA and Ado). This suggests an enhanced Ado influx via ENT1 in hyperthyroid atria. It is concluded that hyperthyroidism does not alter the prevailing direction of the Ado transport, moreover intensifies the Ado influx in the guinea pig atrium.  相似文献   

7.
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.  相似文献   

8.
Particulate fractions of Thiobacillus denitrificans catalyse the phosphorylation of ADP to ATP during the oxidation of various inorganic sulphur compounds or NADH via an electron transport chain. On the other hand, a soluble cell-free fraction synthesized ATP from APS and inorganic phosphate.The production of ATP was verified either by the firefly luciferin-luciferase enzyme system or by the incorporation of 32Pi into ATP. During the oxidation of sulphide, sulphite and NADH the production of ATP from ADP by particulate fractions is inhibited by compounds that inhibit electron transfer and by uncouplers of oxidative phosphorylation. However, these compounds had little effect on the production of ATP from AMP during the oxidation of sulphite by the soluble fraction. NADH was the most effective electron donor for oxidative phosphorylation. The soluble fraction contained high activities of ATP sulphurylase, inorganic pyrophosphatase and adenylate kinase but ADP sulphurylase activity was relatively low. The effects of inhibitors on ATP production from APS and Pi are compared with those on adenylate kinase and ATP sulphurylase.Abbreviations APS adenosine-5-phosphosulphate - DNP 2,4-dinitrophenol - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide  相似文献   

9.
Jae Park 《FEBS letters》2009,583(13):2231-1396
Adenosine kinase (AK) is only found in eukaryotes. Recently, a Mycobacterium tuberculosis (MTub) protein exhibiting greater sequence similarity to ribokinases (RK) was identified as AK. We have expressed AKs from MTub, human and Chinese hamster (CH) cells in Escherichia coli and also AK from human and MTub in AK-deficient CH cells. While both E. coli and CH cells expressing mammalian AKs efficiently metabolized various adenosine analogs, those expressing MTub-AK were completely inactive. The AK activity of the MTub protein was very low (50-fold lower than E. coli RK) and it was not stimulated by phosphate or inhibited by several AK inhibitors. These results raise questions over MTub protein’s true function and whether it functions as AK in cells.  相似文献   

10.
11.
32P was applied to a Laminaria digitata thallus and the pattern of 32P phosphorylated compounds was studied, as a function of time, in the different tissues involved in translocation, i.e. source, pathway and sinks. The results showed that, 3 hours after absorption by the uptake region (lamina), the bulk of the radioactivity was incorporated into organic compounds (70 to 80% of total 32P taken up), hexose monophosphates being the heaviest labelled. Further change in that region was marked by an accumulation of 32P in the inorganic pool (65 to 70% after 13 days). Conversely, the 32P pattern in the medulla of the stipe, which initially showed a similar pattern to the uptake region, did not vary during translocation. The pattern of 32P distribution into sinks (growing stipe peripheral tissue or hapteron) leads to accumulation of the radioactive element in inorganic and acid-insoluble fractions. These results are discussed in terms of comparative distribution of 32P in the different parts of the thallus and suggest that phosphate moves as Pi in that alga.Abbreviations TCA trichloroacetic acid - Po organic phosphate - Po sol acid-soluble organic phosphate fraction - Po insol acidinsoluble organic phosphate fraction - Pi morganic phosphate fraction - P lip lipidic phosphate - Np protein nitrogen - ATP adenosine triphosphate - ADP adenosine diphosphate - PEP phosphoenolpyruvic acid - PGA phosphoglyceric acid - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - UDPG uridine diphosphoglucose  相似文献   

12.
Park J  van Koeverden P  Singh B  Gupta RS 《FEBS letters》2007,581(17):3211-3216
The gene responsible for ribokinase (RK) in human/eukaryotic cells has not yet been identified/characterized. Blast searches with E. coli RK have identified a human protein showing significant similarity to the bacterial RK. The cDNA for this protein was expressed in E. coli and the recombinant protein efficiently phosphorylated ribose to ribose-5-phosphate using ATP, confirming its identity as RK. In contrast to ribose, the enzyme exhibited very little to no phosphorylation of D-arabinose, D-xylose, D-fructose and D-galactose. The catalytic activity of human RK was dependent upon the presence of inorganic phosphate, as observed previously for E. coli RK and mammalian adenosine kinases (AK). A number of activators and inhibitors of human AK, produced very similar effects on the human and E. coli RKs, indicating that the catalytic mechanism of RK is very similar to that of the AKs.  相似文献   

13.
Steven C. Huber 《Planta》1980,149(5):485-492
Chloroplast stromal volume and pH influenced the phosphate (Pi)-dependence of photosynthesis of spinach (Spinacia oleracea L.) chloroplasts. Decreasing the sorbitol concentration in the reaction mixture from 0.35 to 0.25 M, or decreasing the external pH from 8.3 to 7.3, extended the induction period of photosynthesis and decreased both the optimal [Pi] and the minimal [Pi] required to inhibit O2 evolution completely. At least part of the effect of external pH was attributable to changes in stromal pH on the basis of effects of NH4Cl and sodium acetate at a constant external pH. When the external pH was increased from 7.3 to 8.3, the stromal pH changed only about 0.6 pH units. Hence, the pH gradient across the envelope was diminished and the efflux of phosphoglycerate relative to dihydroxyacetone phosphate was enhanced.Calvin-cycle activity, varied with light intesity or electron transport inhibitors, affected the rate of photosynthesis but not the induction period or the Pi optimum for photosynthesis. Relatively low Calvin-cycle activity was apparently sufficient to fill metabolite pools and thus terminate the induction period. The results indicate that pH does not affect the Pi dependence of photosynthesis by reducing Calvin-cycle activity. Rather, it is postulated that at low stromal pH, larger metabolic pools are required to maintain maximum rates of photosynthesis because of changes in substrate affinity of some Calvin-cycle enzymes. Consequently, chloroplast photosynthesis would be more sensitive to exogenous Pi.Abbreviations DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate - Pi inorganic phosphate Cooperative investigations of the North Carolina Agricultural Research Service and Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, Raleigh, N.C. Paper No. 6391 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, N.C., USA  相似文献   

14.
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.  相似文献   

15.
Nitrate reductase (NR; EC 1.6.6.1) in spinach (Spinacia oleracea L.) leaves was inactivated in the dark and reactivated by light in vivo. When extracted from dark leaves, NR activity was lower and more strongly inhibited by Mg2+ relative to the enzyme extracted from leaves harvested in the light. When dark extracts were desalted at pH 6.5 and preincubated at 25° C prior to assay, enzyme activity (assayed either in the presence or absence of Mg2+) remained essentially constant, i.e. there was no spontaneous reactivation in vitro. However, addition of certain metabolites resulted in a time- and concentration-dependent activation of NR in vitro. Effective activators included inorganic phosphate (Pi), 5-AMP, and certain of its derivatives such as FAD and pyridine nucleotides (both oxidized and reduced forms). All of the activators increased NR activity as assayed in the absence of Mg2+, whereas some activators (e.g. Pi, 5-AMP and FAD) also reduced Mg2+ inhibition. The reduction of Mg2+ inhibition was also time-dependent and was almost completely prevented by a combination of okadaic acid plus KF, suggesting the involvement of dephosphorylation catalyzed by endogenous phosphatase(s). In contrast, the activation of NR (assayed minus Mg2+) was relatively insensitive to phosphatase inhibitors, indicating a different mechanism was involved. Compounds that were not effective activators of NR included sulfate, ribose-5-phosphate, adenosine 5-monosulfate, coenzyme A, ADP and ATP. We postulate that NR can exist in at least two states that differ in enzymatic activity. The activators appear to interact with the NR molecule at a site distinct from the NADH active site, and induce a slow conformational change (hysteresis) that increases NR activity (assayed in the absence of Mg2+). Possibly as a result of the conformational change caused by certain activators, the regulatory phospho-seryl groups are more readily dephosphorylated by endogenous phosphatases, thereby reducing sensitivity to Mg2+ inhibition. Preliminary results suggest that light/dark transitions in vivo may alter the distribution of NR molecules between the low- and high-activity forms.Abbreviations AP5A P1, P5-di(adenosine-5)pentaphosphate - DTT dithiothreitol - Mops 3-(N-morpholino)propanesulfonic acid - NR NADH:nitrate reductase - NRA nitrate reductase activity Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643. This work was also supported in part by grants from the U.S. Department of Energy (Grant DE-AIO5-91 ER 20031) and USDA-NRI (Grant 93-373-5-9231). The authors thank Dr. W.M. Kaiser (Lehrstuhl Botanik I der Universität, Würzburg, Germany) for discussions and Dr. C. Lillo (Rogaland University Center, Stavanger, Norway) for sharing results prior to publication.  相似文献   

16.
Methylation of 1,N6-ethenoadenosine (εAdo) gives a mixture of N1- and N9-quaternized methyl-3-β-D -ribofuranosylimidazo[2,1-i] purinium salts (m1εAdo+ and m9εAdo+, respectively). The ratio of the two forms of the protonated εAdo [H1εAdo+]/[H9εAdo+] has been estimated to be approximately 0.10 by comparing the uv absorption spectra of the protonated species of εAdo and the two nontautomerizable model compounds. In relation to a study on the protonation effect on the fluorescence of εAdo, we have now determined the effect of quaternization on the fluorescence spectra at 293 and 77 K. We have found that m1εAdo+ and m9εAdo+ are both fluorescent, and the high degree of coincidence between the fluorescence spectra of εAdo and m1εAdo+ at pH 7 is noted. The m1εAdo+ singlet form is a more efficient fluorescer than the m9εAdo+ ion at room temperature (quantum yields of 0.43 and 0.11, respectively). All the results which are presented in this paper are consistent with the picture that there exist more than one species responsible for the fluorescence of εAdo, depending on the environment of the molecule in aqueous solution (temperature and pH of solvent).  相似文献   

17.
The effect of modulators of protein kinase C (PKC) activity on Ca2+ translocation in retinal rod microsomes was studied. It is shown that PKC activators (phorbol 12-myristate-13-acetate (PMA) and diacylglycerol (DAG)) and inhibitors (chelerythrine chloride, polymyxin B, and phloretin) stimulate and inhibit ATP-dependent Ca2+ uptake in retinal rod microsomes, respectively. This effect is apparently due to an influence of PKC on Ca-ATPase contained in these vesicular structures. It was found that PKC inhibitors (chelerythrine chloride, polymyxin B, and phloretin) and activators (PMA and DAG) potentiate Ca2+ release from Ca2+ -loaded retinal rod microsomes. Specific and nonspecific mechanisms of Ca-release stimulation by the modulators of PKC activity are discussed.  相似文献   

18.
Limited availability of phosphate ion (Pi) reduces plant growth in natural ecosystems. Here, we report the functional effects of overexpressing an Arabidopsis thaliana purple acid phosphatase encoding gene, AtPAP18, in Nicotiana tabbacum as a crop model plant. Transgenic tobacco plants exhibited significant increases in acid phosphatase activity, total P and Pi contents leading to improved biomass production in both Pi-deficient and Pi-sufficient conditions. Transient expression of AtPAP18::green fluorescent fusion protein in onion epidermal cells indicated that AtPAP18 is a dual-targeted protein, which is detected mainly in the apoplast of the cells after 24 h and in the vacuole after 72 h. Possibly, AtPAP18 protein confers efficient retrieval of Pi from bonded extracellular compounds as well as expendable intracellular Pi-monoesters and anhydrides. These data clearly indicate that overexpression of AtPAP18 gene offers an effective approach for reducing the consumption of chemical Pi fertilizer through increased acquisition of soil Pi and mobilization of internal resources.  相似文献   

19.
Summary The action of various inhibitors and activators upon esterase activity in the thyroid epithelial cells is demonstrated. The agents used were triorthocresylphosphate (TOCP), parachloromercuribenzoate (PCMB), Arsanillic acid, p-nitrophenyl dimethyl carbamate and bis p-nitrophenyl phosphate.TOCP was found to inhibit selectively the activity in the follicle cells proper when naphthyl acetate was used as a substrate.Arsanillic acid (0,001 M) activated the follicle cells proper selectively, but if the concentration was raised to 0,01 M the effect was that of inhibition while the activity in the para-, inter- and intrafollicular cells was unchanged.The results obtained are related to previous biochemical and histochemical observations and the nature of esterases in the thyroid is discussed.  相似文献   

20.
Organophosphates, phosphorothioates, phosphorodithioates, phosphites, and phosphonates were found to inhibit the fluoroacetanilide amidohydrolase of chicken liver. Above all, the inhibition by triphenyl phosphate, tri-n-butyl phosphorothioate, triphenyl phosphite, Dipterex, and DDVP were extremely remarkable. Their concentrations for 50% inhibition were about 10?8 m or 10?7 m, and the inhibition of triphenyl phosphate was non-competitive to the substrate. These compounds were slightly or moderately toxic to mice even when administered intraperitoneally. The specificity of the inhibition was also discussed.

The effects of the fluoroacetanilide amidohydrolase (fluoroacetanilidase) inhibitors on the fluoroaceto-p-bromoanilide (FBA) poisoning to mammals and insects were studied. Triphenyl phosphate (TPP) and tri-n-butyl phosphorothioate (TBT) were mainly used as the inhibitors. TPP was effective for reducing the oral and cutaneous toxicities of FBA to mice and rats only when applied prior to the FBA application. However, in cases of the inhaled toxicity and the combined inhaled-cutaneous toxicity, TPP or TBT were effective even when they were applied simultaneously with FBA. When TPP and TBT were administered to mice by the combined inhaled-cutaneous application, the activity of fluoroacetanilidase in liver and kidney was rapidly decreased, but it recovered within 4 to 6 days after the application. The insecticidal and miticidal activities of FBA were not affected at all both in the previous and simultaneous applications of the inhibitors. However, it was found that the fluoroacetanilides hydrolyzing enzyme of Mealy plum aphid was not inhibited by TPP even in the concentration of 10?4 m. The mechanisms of the fluoroacetanilides poisoning to mammals and insects were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号