共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae WSS1 (Weak Suppressor of Smt3) gene has initially been identified as a multicopy suppressor of a mutation in SMT3 encoding the small ubiquitin-like modifier. Later, multiple functions related to DNA replication and repair have been found for WSS1. Here, we report the subcellular location of the Wss1 protein. Fluorescence microscopy of strains expressing a Wss1p-green fluorescent protein (GFP) fusion shows that the protein is present in a single sharp spot near the nuclear membrane, distinct from the spindle pole bodies and nucleolus. In dividing cells, the spot is exclusively present in the mother cell, suggesting a mother cell-specific function of WSS1. 相似文献
2.
3.
GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. 总被引:9,自引:4,他引:9
下载免费PDF全文

J M Franois S Thompson-Jaeger J Skroch U Zellenka W Spevak K Tatchell 《The EMBO journal》1992,11(1):87-96
Elevated dosage of the GAC1 gene from the yeast Saccharomyces cerevisiae causes hyperaccumulation of glycogen whereas a gene disruption of GAC1 results in reduced glycogen levels. Glycogen synthase is almost entirely in the active, glucose 6-phosphate-independent, form in cells with increased gene dosage of GAC1 whereas the enzyme is mostly in the inactive form in strains lacking GAC1. GAC1 encodes an 88 kDa protein that is similar to the regulatory subunit (RG1) of phosphoprotein phosphatase type 1 (PP-1) from skeletal muscle that targets PP-1 to glycogen particles. Taken together, these results suggest that GAC1 encodes a regulatory subunit of PP-1. As previously shown for glycogen phosphorylase (GPH1), GAC1 RNA accumulates concomitantly with the appearance of glycogen. A strain with a mutation in the regulatory subunit of the cAMP-dependent protein kinase (bcy1) fails to accumulate GPH1 and GAC1 RNA. These results point to coordinate regulation of enzymes involved in glycogen metabolism at the level of RNA accumulation and indicate that at least part of this control is exerted by the RAS-cAMP pathway. 相似文献
4.
A conserved sequence in histone H2A which is a ubiquitination site in higher eucaryotes is not required for growth in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1
下载免费PDF全文

Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation. 相似文献
5.
6.
The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae.
下载免费PDF全文

A Eberharter D E Sterner D Schieltz A Hassan J R Yates S L Berger J L Workman 《Molecular and cellular biology》1999,19(10):6621-6631
We have identified two Gcn5-dependent histone acetyltransferase (HAT) complexes from Saccharomyces cerevisiae, the 0.8-MDa ADA complex and the 1.8-MDa SAGA complex. The SAGA (Spt-Ada-Gcn5-acetyltransferase) complex contains several subunits which also function as part of other protein complexes, including a subset of TATA box binding protein-associated factors (TAFIIs) and Tra1. These observations raise the question of whether the 0.8-MDa ADA complex is a subcomplex of SAGA or whether it is a distinct HAT complex that also shares subunits with SAGA. To address this issue, we sought to determine if the ADA complex contained subunits that are not present in the SAGA complex. In this study, we report the purification of the ADA complex over 10 chromatographic steps. By a combination of mass spectrometry analysis and immunoblotting, we demonstrate that the adapter proteins Ada2, Ada3, and Gcn5 are indeed integral components of ADA. Furthermore, we identify the product of the S. cerevisiae gene YOR023C as a novel subunit of the ADA complex and name it Ahc1 for ADA HAT complex component 1. Biochemical functions of YOR023C have not been reported. However, AHC1 in high copy numbers suppresses the cold sensitivity caused by particular mutations in HTA1 (I. Pinto and F. Winston, personal communication), which encodes histone H2A (J. N. Hirschhorn et al., Mol. Cell. Biol. 15:1999-2009, 1995). Deletion of AHC1 disrupted the integrity of the ADA complex but did not affect SAGA or give rise to classic Ada(-) phenotypes. These results indicate that Gcn5, Ada2, and Ada3 function as part of a unique HAT complex (ADA) and represent shared subunits between this complex and SAGA. 相似文献
7.
TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. 总被引:7,自引:1,他引:7
下载免费PDF全文

TRK1 and TRK2 encode proteins involved in K+ uptake in Saccharomyces cerevisiae. A kinetic study of Rb+ influx in trk1 TRK2, trk1 TRK2D, and trk1 trk2 mutants reveals that TRK2 shows moderate affinity for Rb+. K(+)-starved trk1 delta TRK2 cells show a low-affinity component accounting for almost the total Vmax of the influx and a moderate-affinity component exhibiting a very low Vmax. Overexpression of TRK2 in trk1 delta TRK2D cells increases the Vmax of the moderate-affinity component, and this component disappears in trk1 delta trk2 delta cells. In contrast, the low-affinity component of Rb+ influx in trk1 delta TRK2 cells is not affected by mutations in TRK2. Consistent with the different levels of activity of the moderate-affinity Rb+ influx, trk1 delta TRK2 cells grow slowly in micromolar K+, trk1 delta TRK2D cells grow rapidly, and trk1 delta trk2 delta cells fail to grow. The existence of a unique K+ uptake system composed of several proteins is also discussed. 相似文献
8.
Mtwisha Linda Brandt Wolf McCready Sue Lindsey George G. 《Plant molecular biology》1998,37(3):513-521
LEA group I, II and III antibodies all recognised soluble proteins present in an extract of yeast (Saccharomyces cerevisiae). The smaller protein of the two recognised by the group I antibody displayed identical migration on SDS-PAGE to the pea seed LEA group I protein against which the antibody was raised. However, the antibody failed to recognise the predominant protein present after heating the extract at 80 °C for 10 min. This predominant protein, which also displayed identical migration on SDS-PAGE, was purified from the supernatant of the extract heated at 80 °C for 10 min. Peptide sequencing after CNBr cleavage identified the isolated protein as the heat shock protein HSP 12. Despite a previous report that HSP 12 is a heat shock protein, HSP 12 was found to increase in yeast grown at 37 °C compared with growth at 30 °C . However, increased amounts of HSP 12 were present in yeast after entry into stationary phase; this was enhanced by growth in the osmolytes NaCl and mannitol. 相似文献
9.
10.
11.
Yeast killer toxin: purification and characterisation of the protein toxin from Saccharomyces cerevisiae. 总被引:10,自引:0,他引:10
Killer toxin from killer strains of Saccharomyces cerevisiae was isolated from concentrates of extracellular medium by precipitation in poly(ethylene glycol) and chromatography through glyceryl-controlled-pore glass. The toxin migrated as a single protein band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. A molecular weight of 11470 was determined for the toxin protein from its electrophoretic mobility and amino acid composition. Gel filtration of the active toxin indicated that the 11,470-Mr monomer was the active unit. Electrophoretic comparison of extracellular concentrates from a killer strain and an isogenic non-killer showed the presence of the toxin protein only in the killer-derived material. The activity of the toxin was most stable between pH 4.2 and 4.6. At 30 degrees C toxin from a superkiller strain was more stable than that from a normal killer. 相似文献
12.
We have isolated a gene, AAT1, encoding an aspartate aminotransferase (AspAT) from a Saccharomyces cerevisiae genomic library. AAT1 encodes a 451 amino acid protein with a predicted molecular weight of 51,687, which is likely to be the yeast mitochondrial AspAT. Sequence comparison of this yeast AspAT with AspATs from other organisms shows a high degree of homology in regions previously shown to be important for catalysis. However, the yeast mitochondrial AspAT contains four obvious insertions with respect to all other known AspATs, suggesting that the AAT1-encoded protein represents a distinct AspAT. 相似文献
13.
The yeast mitochondrion is shown to contain a pool of copper that is distinct from that associated with the two known mitochondrial cuproenzymes, superoxide dismutase (Sod1) and cytochrome c oxidase (CcO) and the copper-binding CcO assembly proteins Cox11, Cox17, and Sco1. Only a small fraction of mitochondrial copper is associated with these cuproproteins. The bulk of the remainder is localized within the matrix as a soluble, anionic, low molecular weight complex. The identity of the matrix copper ligand is unknown, but the bulk of the matrix copper fraction is not protein-bound. The mitochondrial copper pool is dynamic, responding to changes in the cytosolic copper level. The addition of copper salts to the growth medium leads to an increase in mitochondrial copper, yet the expansion of this matrix pool does not induce any respiration defects. The matrix copper pool is accessible to a heterologous cuproenzyme. Co-localization of human Sod1 and the metallochaperone CCS within the mitochondrial matrix results in suppression of growth defects of sod2Delta cells. However, in the absence of CCS within the matrix, the activation of human Sod1 can be achieved by the addition of copper salts to the growth medium. 相似文献
14.
15.
16.
The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. 总被引:5,自引:0,他引:5
下载免费PDF全文

Nuclear export signal (NES)-containing proteins are recognized by the NES receptor CRM1/Crm1p (also called exportin 1/Xpo1p). In vertebrates and Schizosaccharomyces pombe, the toxin leptomycin B (LMB) inhibits CRM1-mediated export by interacting directly with CRM1 and disrupting the trimeric Ran-GTP-CRM1-NES export complex. In Saccharomyces cerevisiae, LMB is not toxic and is apparently unable to interact with Crm1p. A second difference between the systems is that LMB has no effect on mRNA export in vertebrate systems, whereas there is evidence that S.cerevisiae Crm1p plays a role in mRNA export. Here we show that a single amino acid change converts S. cerevisiae Crm1p from being LMB insensitive to fully LMB sensitive, indicating that Crm1p is the only relevant LMB target. This new strain has no phenotype, but LMB has a rapid and potent inhibitory effect on NES-mediated export. In situ hybridization assays show that LMB also causes nuclear accumulation of poly(A)+ RNA but with a significant delay compared with the effect on NES-mediated export. Biochemical assays indicate little or no LMB effect on cytoplasmic protein synthesis, indicating that the NES-Crm1p pathway is not a major mRNA export route in S.cerevisiae. We conclude that Crm1p structure and function is conserved from S.cerevisiae to man. 相似文献
17.
The overexpression of a Saccharomyces cerevisiae centromeric histone H3 variant mutant protein leads to a defect in kinetochore biorientation
下载免费PDF全文

Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained. 相似文献
18.
The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. 总被引:4,自引:2,他引:4
下载免费PDF全文

N Hisamoto D L Frederick K Sugimoto K Tatchell K Matsumoto 《Molecular and cellular biology》1995,15(7):3767-3776
The Saccharomyces cerevisiae GLC7 gene encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is required for cell growth. A cold-sensitive glc7 mutant (glc7Y170) arrests in G2/M but remains viable at the restrictive temperature. In an effort to identify additional gene products that function in concert with PP1 to regulate growth, we isolated a mutation (gpp1) that exacerbated the growth phenotype of the glc7Y170 mutation, resulting in rapid death of the double mutant at the nonpermissive temperature. We identified an additional gene, EGP1, as an extra-copy suppressor of the glc7Y170 gpp1-1 double mutant. The nucleotide sequence of EGP1 predicts a leucine-rich repeat protein that is similar to Sds22, a protein from the fission yeast Schizosaccharomyces pombe that positively modulates PP1. EGP1 is essential for cell growth but becomes dispensable upon overexpression of the GLC7 gene. Egp1 and PP1 directly interact, as assayed by coimmunoprecipitation. These results suggest that Egp1 functions as a positive modulator of PP1 in the growth control of S. cerevisiae. 相似文献
19.
M Lundin S W Deopujari L Lichko L P da Silva H Baltscheffsky 《Biochimica et biophysica acta》1992,1098(2):217-223
We have studied a mitochondrial inorganic pyrophosphatase (PPase) in the yeast Saccharomyces cerevisiae. The uncoupler FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) and the ionophores valinomycin and nigericin stimulate the PPase activity of repeatedly washed yeast mitochondria 2-3-fold. We have previously cloned a yeast gene, PPA2, encoding the catalytic subunit of a mitochondrial PPase. Uncouplers stimulate the PPase activity several-fold in mitochondria from both cells that overexpress PPA2 from a high copy number plasmid and cells with normal expression. These results indicate that the PPA2 polypeptide functions as an energy linked and membrane associated PPase. The stimulation of mitochondrial PPase activity by FCCP, but not by valinomycin and nigericin, was greatly enhanced by the presence of DTT. The antibiotics Dio-9, equisetin and the F0F1-ATPase inhibitor oligomycin also increase mitochondrial PPase activity several fold. This stimulation is much higher, whereas basal PPase activity is lower, in isotonic than in hypotonic solution, which indicates that intact membranes are a prerequisite for maximal effects. 相似文献