首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The biosynthetic mechanism of α-amylase synthesis in germinating rice (Oryza sativa L. cv. Kimmazé) seeds has been studied both in vitro and in vivo. Special attention has been focused on the glycosylation of the enzyme molecule. Tunicamycin was found to inhibit glycosylation of α-amylase by 98% without significant inhibition of enzyme secretion. The inhibitory effect exerted by the antibiotic on glycosylation did not significantly alter enzyme activity.

In an in vitro system using poly-(A) RNA isolated from rice scutellum and the reticulocyte lysate translation system, a precursor form of α-amylase (precursor I) is formed. Inhibition of glycosylation by Tunicamycin allowed detection of a nonglycosylated precursor (II) of α-amylase. The molecular weight of the nonglycosylated precursor II produced in the presence of Tunicamycin was 2,900 daltons less than that of the mature form of α-amylase (44,000) produced in the absence of Tunicamycin, and 1,800 daltons less than the in vitro synthesized molecule.

The inhibition of glycosylation by Tunicamycin as well as in vitro translation helped clarify the heterogeneity of α-amylase isozymes. Isoelectrofocusing (pH 4-6) of the products, zymograms, and fluorography were employed on the separated isozyme components. The mature and Tunicamycin-treated nonglycosylated forms of α-amylase were found to consist of three isozymes. The in vitro translated precursor forms of α-amylase consisted of four multiple components. These results indicate that heterogeneity of α-amylase isozymes is not due to glycosylation of the enzyme protein but likely to differences in the primary structure of the protein moiety, which altogether support that rice α-amylase isozymes are encoded by multiple genes.

  相似文献   

2.
α-Amylase from wheat aleurone (Triticum aestivum) was synthesized in a S-150 wheat germ readout system using polysomes, and a messenger RNA-dependent reticulocyte lysate system using polyadenylic acid [poly(A)]-enriched RNA. The product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, precipitation by specific λ-globulin for α-amylase, and proteolysis. Two immunoprecipitated products were synthesized from the readout system, the predominant species migrating coincidentally with authentic α-amylase on sodium dodecyl sulfate-polyacrylamide gels. A putative precursor, 1,500 daltons larger, was evident but was less abundant. The relationship between the two polypeptides was established by proteolytic analysis using Staphylococcus aureus V8 protease. At least nine fragments were generated and were identical in both species. The poly(A)-enriched RNA synthesized only the putative precursor in the reticulocyte lysate system. Attempts to process the precursor to the mature size of α-amylase failed. These findings are discussed in connection with the signal hypothesis (proposed for the transport of proteins across membranes) and the mode of secretion of α-amylase in aleurone cells.  相似文献   

3.
In vitro translation of RNA extracted from Vigna mungo cotyledons showed that α-amylase is synthesized as a polypeptide with a molecular mass of 45,000, while cotyledons contain a form of α-amylase with a molecular mass of 43,000. To find out whether the 45,000 molecular mass polypeptide is a precursor to the 43,000 found in vivo, the cell free translation systems were supplemented with canine microsomal membrane; when mRNA was translated in the wheat germ system supplemented with canine microsomes, the 45,000 molecular mass form was not processed to a smaller form but the precursor form was partly processed in the membrane-supplemented reticulocyte lysate system. When V. mungo RNA was translated in Xenopus oocyte system, only the smaller form (molecular mass 43,000) was detected. Involvement of contranslational glycosylation in the maturating process of the α-amylase was ruled out because there was no effect of tunicamycin, and the polypeptide was resistant to endo-β-H or endo-β-D digestion. We interpret these results to mean that the 45,000 molecular mass form is a precursor with a signal peptide or transit sequence, and that the 43,000 molecular mass is the mature form of the protein.  相似文献   

4.
Kernels of Klages barley (Hordeum vulgare L.) were germinated for 1 to 4 days on moist sand at 18°C. Representative kernels from each time period were dissected to give the following fractions: scutellum, subscutellar endosperm, aleurone-scutellum interface, remaining aleurone, subaleurone endosperm, and core endosperm. These tissues were analyzed for α-amylase components by isoelectric focusing and rocket-line immunoelectrophoresis. Although aleurone and scutellar tissues appeared to synthesize the same α-amylase components, enzyme was detected first in the scutellum. A larger proportion of scutellar α-amylase was excreted into the endosperm compared to aleurone synthesized α-amylase. Aleurone cells appeared to synthesize appreciably more α-amylase than did scutellar tissue.  相似文献   

5.
Thylakoids were isolated from nonhardened and cold-hardened winter rye (Secale cereale L. cv. Puma), and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of sulfhydryl reagents. Electrophoresis of cold-hardened rye thylakoid proteins revealed the presence of a 35 kilodalton polypeptide and the absence of a 51 kilodalton polypeptide found in nonhardened rye thylakoid proteins. The 35 kilodalton band could be induced by adding β-mercaptoethanol to nonhardened rye thylakoid proteins, whereas the 51 kilodalton band could be formed by adding cupric phenanthroline to these same proteins. Sulfhydryl group titration showed that cold-hardened rye thylakoid proteins contained more free sulfhydryls than nonhardened rye proteins. Although amino acid analysis of thylakoid proteins revealed quantitative differences in several amino acid residues, the polarity of thylakoid proteins did not change during cold acclimation. No significant changes in sodium dodecyl sulfate-polyacrylamide gels of thylakoid proteins appeared when either nonhardened or cold-hardened plants were frozen in vivo or in vitro. However, thylakoid proteins did aggregate when frozen in the presence of β-mercaptoethanol. Although thylakoid proteins isolated from cold-hardened rye contained more reduced thiols, a general state of reduction did not act as a cryoprotectant. It is hypothesized that conformational changes of specific proteins may be important for low temperature growth of rye.  相似文献   

6.
Wheat (Triticum aestivum) RNA was used to program synthesis of the α-amylase protein by Xenopus laevis oocytes. A 41,500-dalton protein was made which was identified as α-amylase by immunoprecipitation with rabbit anti-α-amylase antiserum raised against the purified wheat protein and by its co-migration with authentic α-amylase on sodium dodecyl sulfate polyacrylamide gels. Synthesis of α-amylase was dependent upon injection of RNA extracted from gibberellic acid-induced aleurone layers from wheat. The amount of α-amylase produced was proportional to the amount of RNA injected and reached a plateau within 4 hours after injection. When the same RNA was translated in a wheat germ cell-free translation system, a 43,000-dalton protein was produced. Addition of dog pancreas microsomal membranes to the wheat germ translation system resulted in processing of the α-amylase protein to a form which co-migrated with authentic α-amylase purified from malted wheat and with the protein synthesized in oocytes.  相似文献   

7.
Polyclonal antibodies raised against barley (1→3,1→4)-β-d-glucanase, α-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley. In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding α-amylase or (1→3,1→4)-β-d-glucanase, while in the aleurone α-amylase and (1→3,1→4)-β-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1→3,1→4)-β-d-glucanase, α-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation products were identical for each enzyme.  相似文献   

8.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

9.
Mozer TJ 《Plant physiology》1980,65(5):834-837
The poly(A)-containing mRNA from barley aleurone layers pretreated with gibberellic acid has been purified by phenol-chloroform extraction and repeated oligo[d(pT)]-cellulose chromatography. This RNA has been translated in both the wheat germ and reticulocyte lysate in vitro translation systems with greater than 50% of the synthesized protein being α-amylase. The mRNA for α-amylase has been further purified by dimethylsulfoxide-formamide-sucrose density gradient centrifugation and by gel electrophoresis. By these methods, its molecular weight has been determined to be 580,000.  相似文献   

10.
Structural Relationship among the Rice Glutelin Polypeptides   总被引:1,自引:1,他引:0  
When the glutelin protein fraction of rice (Oryza sativa L.) seeds was fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, three size classes of proteins, 51 kilodaltons (kD), 34 to 37 kD, and 21 to 22 kD, as well as a contaminating prolamine polypeptide of 14 kD were detected. Antibodies were raised against these proteins and employed in studies to determine whether a precursor-product relationship existed among the glutelin components. Antibodies of the 34 to 37 kD and 21 to 22 kD polypeptides strongly reacted with the 51 kD protein, and conversely, anti-51 kD protein cross reacted with both of the putative subunits. Immunoprecipitation of in vitro translated products resulted in the synthesis of only the precursor form, indicating that the α and β subunits are proteolytic products of the 51 kD precursor protein. The poly(A)+ RNA directed in vitro translated product was about 2000 daltons larger than both the authentic glutelin precursor and the in vitro translated product from polysome run-off synthesis. Western blot analysis of the 34 to 37 kD and 21 to 22 kD polypeptides partially digested with Staphylococcus aureus V8 protease revealed distinct patterns indicating that these proteins are structurally unrelated. As observed for the glutelins, the rice prolamines are also synthesized as a precursor of 16 kD, 2000 daltons larger than the mature polypeptide. Addition of dog pancreatic microsomal membranes to a wheat germ protein translation system resulted in the processing of the prolamine preprotein but not the preproglutelin to the mature form.  相似文献   

11.
Sanwo MM  Demason DA 《Plant physiology》1992,99(3):1184-1192
The role of the scutellum and the aleurone in α-amylase production in the high-sugar sweet corn cultivars Illini X-tra Sweet (shrunken-2, sh2) and Illinois 677a (sugary, sugary enhancer; su se) was compared to that in the starchy (Su) hybrid Funks G4646 with the use of α-amylase enzyme assays, isoelectric focusing, electron microscopy, and laser scanning confocal microscopy. The scutellum of Illinois 677a had low levels of α-amylase activity compared to that of Funks G4646 through 10 days after imbibition, and the aleurone of Illini X-tra Sweet had negligible activity. On the isoelectric focusing gels, the Illinois 677a scutellum had fewer α-amylase isozymes at 7 days compared to the Funks G4646 scutellum. The Illini X-tra Sweet aleurone had no α-amylase isozymes. Funks G4646 scutellar epithelial and aleurone cells contained abundant rough endoplasmic reticulum, polysomes, and dictyosomes at 5 and 7 days, respectively. The scutellar epithelial cells of Illinois 677a contained fewer of these structures by 5 days, and the Illini X-tra Sweet aleurone contained mostly lipid bodies through 7 days. Few cytoplasmic membranes and little RNA were detected with laser scanning confocal microscopy in the Illini X-tra Sweet aleurone compared to Funks G4646 at 7 days. These data suggest that the scutellum of Illinois 677a and the aleurone of Illini X-tra Sweet have impaired abilities to produce α-amylase.  相似文献   

12.
Lin LS  Ho TH 《Plant physiology》1986,82(1):289-297
As part of a continuing effort to elucidate the mode of action of abscisic acid (ABA) in barley (Hordeum vulgare L. cv Himalaya) aleurone layers, we have investigated the induction of several polypeptides by ABA in this tissue. There were nine ABA-induced polypeptides as observed by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and considerably more (at least 16 spots) on a two-dimensional gel. These proteins started to show enhanced synthesis 2 to 4 hours after ABA treatment, and their synthesis continued for at least 48 hours. In vitro translation using total RNA isolated from ABA-treated aleurone layers indicated that translatable mRNA levels of these proteins essentially paralleled the levels of in vivo synthesized proteins. The most abundant of the ABA-induced proteins was a 29 kilodalton polypeptide which was also synthesized in tissue incubated without ABA. In vivo synthesis of this protein declined as ABA concentration was decreased, with 1 nanomolar ABA approaching control level. Cell fractionation experiments located the 29 kilodalton major ABA-induced protein in 1,000g and 13,000g pellets; most other induced proteins were in the 80,000g supernatant. The 29 kilodalton protein appeared to be sensitive to degradation by sulfhydryl type proteases. As expected, the induction of these proteins by ABA was suppressed by gibberellic acid. Phaseic acid, the first stable metabolite of ABA, suppressed the gibberellic acid-enhanced α-amylase synthesis but was unable to induce the ABA-induced proteins. None of the ABA-induced proteins were secreted into the incubation medium. A 36 kilodalton ABA-induced protein showed cross-reactivity with antibody against a barley lectin specific for glucosamine, galactosamine, and mannosamine.  相似文献   

13.
An inhibitor of malted barley (Hordeum vulgare cv Conquest) α-amylase II was purified 125-fold from a crude extract of barley kernels by (NH4)2SO4 fractionation, ion exchange chromatography on DEAE-Sephacel, and gel filtration on Bio-Gel P 60. The inhibitor was a protein with an approximate molecular weight of 20,000 daltons and an isoelectric point of 7.3. The protein was homogeneous, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicated the presence of about 9 half-cystine residues per mole. The neutral isoelectric point of the inhibitor suggested that some of the apparently acidic residues (glutamic and aspartic) existed in the amide form. The first twenty N-terminal amino acids were sequenced. Some homology appeared to exist between the α-amylase II inhibitor and trypsin inhibitor from barley. Complex formation between α-amylase II and the inhibitor was detected by the appearance of a new molecular weight species after gel filtration on Bio-Gel P 100. Enzyme and inhibitor had to be preincubated for 5 min, prior to assaying for enzyme activity before maximum inhibition was attained. Inhibition increased at higher pH values. At pH 5.5, an approximately 1100 molar excess of inhibitor over α-amylase II produced 40% inhibition, whereas, at pH 8.0, a 1:1 molar ratio of inhibitor to enzyme produced the same degree of inhibition.  相似文献   

14.
15.
The specific measurement of α-amylase activity in crude plant extracts is difficult because of the presence of β-amylases which directly interfere with most assay methods. Methods compared in this study include heat treatment at 70°C for 20 min, HgCl2 treatment, and the use of the α-amylase specific substrate starch azure. In comparing alfalfa (Medicago sativa L.), soybeans (Glycine max [L.] Merr.), and malted barley (Hordeum vulgare L.), the starch azure assay was the only satisfactory method for all tissues. While β-amylase can liberate no color alone, over 10 International units per milliliter β-amylase activity has a stimulatory effect on the rate of color release. This stimulation becomes constant (about 4-fold) at β-amylase activities over 1,000 International units per milliliter. Two starch azure procedures were developed to eliminate β-amylase interference: (a) the dilution procedure, the serial dilution of samples until β-amylase levels are below levels that interfere; (b) the β-amylase saturation procedure, addition of exogenous β-amylase to increase endogenous β-amylase activity to saturating levels. Both procedures yield linear calibrations up to 0.3 International units per milliliter. These two procedures produced statistically identical results with most tissues, but not for all tissues. Differences between the two methods with some plant tissues was attributed to inaccuracy with the dilution procedure in tissues high in β-amylase activity or inhibitory effects of the commercial β-amylase. The β-amylase saturation procedure was found to be preferable with most species. The heat treatment was satisfactory only for malted barley, as α-amylases in alfalfa and soybeans are heat labile. Whereas HgCl2 proved to be a potent inhibitor of β-amylase activity at concentrations of 10 to 100 micromolar, these concentrations also partially inhibited α-amylase in barley malt. The reported α-amylase activities in crude enzyme extracts from a number of plant species are apparently the first specific measurements reported for any plant tissues other than germinating cereals.  相似文献   

16.
Membrane-associated lipoxygenase from green tomato (Lycopersicon esculentum L. cv Caruso) fruit has been purified 49-fold to a specific activity of 8.3 μmol·min−1·mg−1 of protein by solubilization of microsomal membranes with Triton X-100, followed by anion- exchange and size-exclusion chromatography. The apparent molecular mass of the enzyme was estimated to be 97 and 102 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography, respectively. The purified membrane lipoxygenase preparation consisted of a single major band following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which cross-reacts with immunoserum raised against soluble soybean lipoxygenase 1. It has a pH optimum of 6.5, an apparent Km of 6.2 μm, and Vmax of 103. μmol·min−1·mg−1 of protein with linoleic acid as substrate. Corresponding values for the partially purified soluble lipoxygenase from tomato are 3.8 μm and 1.3 μmol·min−1·mg−1 of protein, respectively. Thus, the membrane-associated enzyme is kinetically distinguishable from its soluble counterpart. Sucrose density gradient fractionation of the isolated membranes indicated that the membrane-associated lipoxygenase sediments with thylakoids. A lipoxygenase band with a corresponding apparent mol wt of 97,000 was identified immunologically in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins of purified thylakoids prepared from intact chloroplasts isolated from tomato leaves and fruit.  相似文献   

17.
Salas E  Cardemil L 《Plant physiology》1986,81(4):1062-1068
α-Amylase is one of the major enzymes present in the seeds of both Araucaria species of South America and it initiates starch hydrolysis during germination and early seedling growth. The pattern of the multiple forms of α-amylase of the two Araucaria species was investigated by electrophoresis and isoelectrofocusing of the native enzyme in polyacrylamide gels. The enzyme forms were compared in the embryo and megagametophyte of quiescent seeds and of seeds imbibed for 18, 48, and 90 hours. Specific α-amylase enzyme forms appear and disappear during these imbibition periods showing both similarities and differences between tissues and species. Before imbibition, there are five α-amylase forms identical in both tissues, but different between species. After 18 hours of imbibition, there are two enzyme forms in both tissues of Araucaria araucana seeds, only one form in the embryo of Araucaria angustifolia but two forms in the megagametophyte of this specie. After 48 hours of seed imbibition, most of the enzyme forms present in quiescent seeds reappear. At 90 hours of imbibition different enzyme forms are detected in the embryo with respect to the gametophyte. The changes in form patterns of α-amylase are discussed according to a possible regulation of gene expression by endogenous gibberellins.  相似文献   

18.
Saeed M  Duke SH 《Plant physiology》1990,94(4):1813-1819
Pea (Pisum sativum L.) tissues with reduced chloroplast density (e.g. petals and stems) or function (i.e. senescent leaves and leaves darkened for prolonged periods) were surveyed to determine whether tissues with genetically or environmentally reduced chloroplast density and/or function also have significantly different amylolytic enzyme activities and/or isoform patterns than leaf tissues with totally competent chloroplasts. Native PAGE followed by electrophoretically blotting through a starch or β-limit dextrin containing gel and KI/I2 staining revealed that the primary amylases in leaves, stems, petals, and roots were the primarily vacuolar β-amylase (EC 3.2.1.2) and the primarily apoplastic α-amylase (EC 3.2.1.1). Among tissues of light grown pea plants, petals contained the highest levels of total amylolytic (primarily β-amylase) activity and considerably higher ratios of β- to α-amylase. In aerial tissues there was an inverse relationship between chlorophyll and starch concentration, and β-amylase activity. In sections of petals and stems there was a pronounced inverse relationship between chlorophyll concentration and the activity of α-amylase. Senescing leaves of pea, as determined by age, and protein and chlorophyll content, contained 3.8-fold (fresh weight basis) and 32-fold (protein basis) higher α-amylase activity than fully mature leaves. Leaves maintained in darkness for 12 days displayed a 14-fold (fresh weight basis) increase in α-amylase activity over those grown under continuous light. In senescence and prolonged darkness studies, the α-amylase that was greatly increased in activity was the primarily apoplastic α-amylase. These studies indicate that there is a pronounced inverse relationship between chloroplast function and levels of apoplastic α-amylase activity and in some cases an inverse relationship between chloroplast density and/or function and vacuolar β-amylase activity.  相似文献   

19.
Immunoprecipitation and two-dimensional gel electrophoresis analysis of the glutamine synthetase (GS) polypeptides (α and β) during Phaseolus vulgaris root development shows that the α polypeptide is the main component of the enzyme in the embryo and in up to 5 day old roots. From 5 days on, the β polypeptide becomes the root predominant GS monomer. The α/β ratio of the in vitro translated GS polypeptides from the total polysomal RNA isolated at different root ages correlates with the α/β ratio observed in the root extracts. These results suggest that the two root GS polypeptides are encoded by different mRNA species in Phaseolus vulgaris.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号