首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用模拟试验的方法,研究了“草基-鱼塘”系统中的能量转化与养分循环.结果表明,该系统中饲草对太阳能的利用率为0.83%,鱼对饲料能的转化率为7.3%.与以粮食作为鱼饲料比较,单位面积草地的产鱼当量是粮食作物的1.6倍.鱼对饲料N、P、K的转化率分别为16.8%、32.3%和2.0%.塘泥沉积的N、P分别占饲料的23.4%和56.1%;猪对饲料N、P、K的转化率分别为20.5%、33.7%和4.6%,猪粪尿回收饲料N为36.4%、P为63.8%、K为39.4%.猪-草-鱼结合的基塘系统其能量和养分转化效率均高于单一的养鱼系统.  相似文献   

2.
草基—鱼塘生态系统的能量转化与养分循环研究   总被引:5,自引:2,他引:5  
应用模拟试验的方法,研究了“草基-鱼塘”系统中的能量转化与养分循环.结果 表明,该系统中饲草对太阳能的利用率为 0. 83%,鱼对饲料能的转化率为 7. 3%.与以粮 食作为鱼饲料比较,单位面积草地的产鱼当量是粮食作物的1.6倍.鱼对饲料N、P、K的 转化率分别为16.8%、32.3%和2.0%.塘泥沉积的N、P分别占饲料的23.4%和56.1%; 猪对饲料 N、 P、 K的转化率分别为 20. 5%、 33. 7%和 4. 6%,猪粪尿回收饲料 N为 36. 4%、 P为 63. 8%、 K为 39. 4%.猪-草-鱼结合的基塘系统其能量和养分转化效率均高于单一的 养鱼系统.  相似文献   

3.
We assessed a number of biomass and soil parameters in order to examinerelationships among nutrient availability, forest productivity and vegetationpatterns in two old-growth forested watersheds in a pristine montane landscapeon Isla de Chiloé, Chile. We selected watersheds in both gymnosperm- andangiosperm-dominated forests and determined tree species, d.b.h. and health forall trees < 2 cm d.b.h. in plots established at 50m intervals. Soils were sampled at two depths in each plot andanalyzed for total C and N, and for exchangeable Ca, K, Mg andresin-extractableP. Allometric relationships and vegetation nutrient concentrations were used todetermine above-ground pools from the vegetation survey data. Growth rates werederived from increment core measures. Soil pools of most elements measuredappear adequate to support forest growth indefinitely. Mineralized nitrogen,which is similar in quantity to the annual demand for nitrogen from the soil isthe exception, consistent with the possibility of N limitation in two of theforest types studied. A third type, an evergreen broadleaved forest, appears torequire substantially more nitrogen than would appear to be available from netmineralization measurements. Productivity per unit of nitrogen required fromthesoil is quite high, largely as a consequence of the evergreen habit of thespecies in these forests. Compared to other temperate montane forests in theNorthern Hemisphere, nutrient pools and cycling characteristics were found tobemostly similar across forest types, in spite of considerable variation invegetation and soils.  相似文献   

4.
植物养分利用效率研究综述   总被引:34,自引:4,他引:34  
养分利用效率的概念是理解生态系统功能的中心。本文从植物养分利用效率的概念出发,对养分利用效率的表示与计算方法、影响因素以及养分再吸收的生物化学基础等进行综述,分析目前研究中存在的问题,最后指出今后应加强研究的方面。  相似文献   

5.
Summary The concept of the relative nutrient requirement (L n) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the dominant plant species has on (1) the distribution of nutrients over the plant biomass and the soil compartment of the ecosystem and (2) the recirculation rate of nutrients. The first effect of the dominant plant species can be calculated on the basis of the /k ratio (which is the ratio of the relative mortality to the decomposition constant). The second effect can be analysed using the relative nutrient requirement (L n). The mass loss and the changes in the amounts of N and P in decomposing above-ground and below-ground litter produced by Erica tetralix and Molinia caerulea were measured over three years. The rates of mass loss from both above-ground and below-ground litter of Molinia were higher than those from Erica litter. After an initial leaching phase, litter showed either a net release or a net immobilization of nitrogen or phosphorus that depended on the initial concentrations of these nutrients. At the same sites, mineralization of nitrogen and phosphorus were measured for two years both in communities dominated by Molinia and in communities dominated by Erica. There were no clear differences in the nitrogen mineralization, but in one of the two years, phosphate mineralization in the Molinia-community was significantly higher. On the basis of the theory that was developed, mineralization rates and ratios between amounts of nutrients in plant biomass and in the soil were calculated on the basis of parameters that were independently measured. There was a reasonable agreement between predicted and measured values in the Erica-communities. In the Molinia-communities there were large differences between calculated and measured values, which was explained by the observation that the soil organic matter in these ecosystems still predominantly consisted of Erica-remains.  相似文献   

6.
R. Aerts 《Oecologia》1989,78(1):115-120
Summary Leaf turnover and aboveground productivity in relation to nutrient availability were studied in the evergreen shrubs Erica tetralix and Calluna vulgaris. In monospecific stands of these species four levels of nutrient (NPK) availability were created during three growing seasons. Percentage survival and life expectancy of Erica leaves decreased with increasing nutrient availability. For Calluna there was no effect. Winter mortality of Erica leaves was smaller than growing season mortality. These was no difference for Calluna. The timing of leaf mortality of both species was not affected by nutrient treatment. At the end of the experimental period current year leaf biomass, total biomass and current year second year and third year biomass of both species showed a significant increase with increasing nutrient availability. The relative increase was greater for Calluna, except for second and third year biomass. Stem production and stem mortality of both species increased with increasing nutrient availability. The increased stem mortality resulted also for Calluna in an increased leaf turnover (per unit ground area) with increasing nutrient availability. Nutrient cycling in ecosystems dominated by these species will increase with increasing nutrient availability, because of increased leaf and stem turnover and productivity. This phenotypic effect is similar to the effect of the shift in dominance between different species which occurs along natural gradients of nutrient availability.  相似文献   

7.
An aquatic microcosm, consisting of three spatially separated yet mutually dependent trophic levels, was established in the laboratory and monitored for 310 days. A three-fold research approach evaluates the experimental potential of this large, multicompartmental microecosystem. Realistic biological and chemical features and nutrient fluxes parallel identifiable patterns observed in natural aquatic ecosystems as well as in published laboratory observations. Two successional patterns developed in the autotrophic community: a sequential change in species composition and a progression from a one-compartment planktonic situation to a two-phased planktonic-attached system. Although the microcosm was initially seeded with an axenic culture of Cryptomonas ovata var. palustris Ehr, contamination by Chlorella, Scenedesmus, Closterium, and Anabaena occurred within 41 days. The appearance of attached algae, noted on day 5, marked the transition from a planktonically-based ecosystem to a heterogeneous system. Crashes in the cladoceran population occurred on days 103 and 202. The second collapse was final. Repeated attempts to reestablish Daphnia middendorffiana failed. Mineralization and nutrient cycling are recognizable properties of the microcosm. Ammonification, nitrification, and nitrogen assimilation occurred predominantly in the decomposer tank as did the regeneration of inorganic phosphorus. A peak on day 205 in the ammonia input to the algal tank drawn from beneath the bacterial filter bed followed a peak in total Kjeldahl nitrogen (TKN) (day 135) and preceded peaks in nitrate (day 219) and TKN (day 233). Although levels in the algal tank were undetectable after three weeks, dissolved orthophosphate was actively regenerated in the decomposer bed, recycled to the autotroph unit, and rapidly assimilated by the algae. Characteristic patterns of radiotracer circulation also were evident. Sequential movement of 32P from the dissolved compartment to phytoplankton to attached algae was proposed. Conversely, 14C was steadily incorporated into the phytoplankton compartment; filtrate activities fluctuated. Tracer behaviors in the cladoceran compartment were superficially cyclic. Carbon turnover times in the algal and zooplankton compartments were 17 and 11.11 hours, respectively. Indicative of the greater biological mobility of phosphorus, respective turnover times of 2.50 and 2.44 hours were similarly calculated for phosphorus. Unlike dissolved carbon which had a turnover time of 625 hours, dissolved phosphorus was rapidly cycled into the algae (turnover time = 0.58 h).  相似文献   

8.
9.
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.  相似文献   

10.
The biogeochemistry of chlorine at Hubbard Brook,New Hampshire,USA   总被引:3,自引:3,他引:0  
Chlorine is a minor constituent of most rocks and a minor (although essential) element in plants, but it cycles rapidly through the hydrosphere and atmosphere. In forest ecosystem studies, chloride ion (Cl) is often thought to be conservative in the sense that the sources and sinks within the ecosystem are assumed negligible compared to inputs and outputs. As such, Cl is often used as a conservative tracer to assess sources and transformations of other ions. In this paper we summarize research on chloride over the course of 36 years (1964–2000) at the Hubbard Brook Experimental Forest (HBEF) in central New Hampshire, USA. Evidence presented here suggests that in the 1960s and 1970s the dominant source of atmospheric Cl deposition was from pollutant sources, probably coal burning. In the 1970s the Cl inputs in bulk deposition declined, and the lower Cl deposition in the last two decades is dominated by marine sources. Between 1964 and 2000 there was no significant trend in Cl export in stream flow, thus the net hydrologic flux (NHF = bulk deposition inputs − streamflow outputs) has changed over this period. Early in the record the NHF was on average positive, indicating net retention of Cl within the system, but since about 1980 the NHF has been consistently negative, indicating an unmeasured input or source within the ecosystem. Dry deposition can account for at least part of that unmeasured source, and it appears that release of Cl from mineralization of soil organic matter (SOM) may also play an important role. We believe that accumulation of Cl in vegetation during the 1960s and 1970s offset the unmeasured source and resulted in net ecosystem retention. Accumulation of vegetative biomass has ceased since about 1982, leading to the apparent net export (negative NHF) since that time. Although we have no direct measurements of Cl accumulation in vegetation, our estimates suggest that an aggrading forest could sequester about 32 mol Cl ha−1 year−1, or about a third of the annual average bulk deposition flux to this ecosystem. Experimental additions of Cl to the forest floor cause increases in Cl concentration in foliage, throughfall, and soil solution. Manipulations of vegetation also affect the Cl cycle. Harvesting or devegetation of watersheds causes an increase in the Cl concentration and flux in stream water for several years after the disturbance. This period of release is followed by a period of reaccumulation of Cl that may last more than 15 years. In this respect, the behavior of Cl after disturbance parallels that of NO3, for which export increases after disturbance due to reduced plant nitrogen uptake and mineralization of nitrogen from detritus, rather than SO42−, for which export decreases after disturbance due to pH-dependent adsorption onto mineral soils. The interannual pattern of Cl export from the system primarily reflects the atmospheric inputs, but the net retention and cycling of Cl within the system appears to be largely under biological, rather than geochemical, control.  相似文献   

11.
Using experiments and monitoring, we find that grasshoppers in a grassland ecosystem impact ecosystem functioning (nutrient cycling and primary production) in different ways among sites in the ecosystem. Experiments conducted over many years at two sites (21 and 15 years, respectively) with the same grasshopper and plant species demonstrated that grasshoppers increased nitrogen availability (N) and consequently annual plant production (ANPP) at one site, and decreased N and consequently ANPP at the other site. Comparing the two sites, N increased on average by 8% and up to 21.6%, and resulting ANPP increased on average by 18.6% and up to 33.3%. Grasshoppers increase N and ANPP by preferentially feeding on slower decomposing plants, and the opposite occurs by preferentially feeding on faster decomposing plants. Monitoring 20 random sites in the ecosystem, grasshoppers consistently increased N and ANPP over 3 years at 40% of sites, consistently decreased N and ANPP at 35% of sites, and sometimes increased and decreased N and ANPP at 25% of sites. Therefore, grassland grasshoppers, and insects in many ecosystems, may strongly affect ecosystem functioning.  相似文献   

12.
Sediment deposition is the main mechanism of nutrient delivery to tidal freshwater marshes (TFMs). We quantified sediment nutrient accumulation in TFMs upstream and downstream of a proposed water withdrawal project on the Mattaponi River, Virginia. Our goal was to assess nutrient availability by comparing relative rates of carbon (C), nitrogen (N), and phosphorus (P) accumulated in sediments with the C, N, and P stoichiometries of surface soils and above ground plant tissues. Surface soil nutrient contents (0.60–0.92% N and 0.09–0.13% P) were low but within reported ranges for TFMs in the eastern US. In both marshes, soil nutrient pools and C, N, and P stoichiometries were closely associated with sedimentation patterns. Differences between marshes were more striking than spatial variations within marshes: both C, N, and P accumulation during summer, and annual P accumulation rates (0.16 and 0.04 g P m–2 year–1, respectively) in sediments were significantly higher at the downstream than at the upstream marsh. Nitrogen:P ratios <14 in above ground biomass, surface soils, and sediments suggest that N limits primary production in these marshes, but experimental additions of N and/or P did not significantly increase above ground productivity in either marsh. Lower soil N:P ratios are consistent with higher rates of sediment P accumulation at the downstream site, perhaps due to its greater proximity to the estuarine turbidity maximum.  相似文献   

13.
Deforestation in the Brazilian Amazon has resulted in the conversion of >230,000 km2 of tropical forest, yet little is known on the quantities of biomass consumed or the losses of nutrients from the ecosystem. We quantified the above-ground biomass, nutrient pools and the effects of biomass burning in four slashed primary tropical moist forests in the Brazilian Amazon. Total above-ground biomass (TAGB) ranged from 292 Mg ha-1 to 436 Mg ha-1. Coarse wood debris (>20.5 cm diameter) was the dominant fuel component. However, structure of the four sites were variable. Coarse wood debris comprised from 44% to 69% of the TAGB, while the forest floor (litter and rootmat) comprised from 3.7 to 8.0% of the TAGB. Total biomass consumption ranged from 42% to 57%. Fires resulted in the consumption of >99% of the litter and rootmat, yet <50% of the coarse wood debirs. Dramatic losses in C, N, and S were quantified. Lesser quantities of P, K, and Ca were lost by combustion processes. Carbon losses from the ecosystem were 58–112 Mg ha-1. Nitrogen losses ranged from 817 to 1605 kg ha-1 and S losses ranged from 92 to 122 kg ha-1. This represents losses that are as high as 56%, 68%, and 49% of the total above-ground pools of these nutrients, respectively. Losses of P were as high as 20 kg ha-1 or 32% of the above-ground pool. Losses to the atmosphere arising from primary slash fires were variable among sites due to site differences in concentration, fuel biomass, and fuel structure, climatic fluctuations, and anthropogenic influences. Compared to fires in other forest ecosystems, fires in slashed primary tropical evergreen forests result in among the highest total losses of nutrients ever measured. In addition, the proportion of the total nutrient pool lost from slash fires is higher in this ecosystem compared to other ecosystems due to a higher percentage of nutrients stored in above-ground biomass.  相似文献   

14.
Because the capability of terrestrial ecosystems to fix carbon is constrained by nutrient availability, understanding how nutrients limit plant growth is a key contemporary question. However, what drives nutrient limitations at global scale remains to be clarified. Using global data on plant growth, plant nutritive status, and soil fertility, we investigated to which extent soil parent materials explain nutrient limitations. We found that N limitation was not linked to soil parent materials, but was best explained by climate: ecosystems under harsh (i.e., cold and or dry) climates were more N‐limited than ecosystems under more favourable climates. Contrary to N limitation, P limitation was not driven by climate, but by soil parent materials. The influence of soil parent materials was the result of the tight link between actual P pools of soils and physical–chemical properties (acidity, P richness) of soil parent materials. Some other ground‐related factors (i.e., soil weathering stage, landform) had a noticeable influence on P limitation, but their role appeared to be relatively smaller than that of geology. The relative importance of N limitation versus P limitation was explained by a combination of climate and soil parent material: at global scale, N limitation became prominent with increasing climatic constraints, but this global trend was modulated at lower scales by the effect of parent materials on P limitation, particularly under climates favourable to biological activity. As compared with soil parent materials, atmospheric deposition had only a weak influence on the global distribution of actual nutrient limitation. Our work advances our understanding of the distribution of nutrient limitation at global scale. In particular, it stresses the need to take soil parent materials into account when investigating plant growth response to environment changes.  相似文献   

15.
Recent studies on plant–herbivore indirect interactions via nutrient recycling have led to the hypothesis that herbivores with a low nitrogen: phosphorus ratio, feeding on plants with a higher nitrogen: phosphorus ratio, recycle relatively more nitrogen, driving plants into phosphorus limitation. We demonstrate in this paper that such a hypothesis is valid only under restricted conditions, i.e. the nitrogen: phosphorus ratio of inorganic nutrients supplied to the system must be neither too high nor too low compared with the nitrogen: phosphorus ratio of the whole plant + herbivore biomass. If plants have a greater affinity for phosphorus than for nitrogen, low herbivore nitrogen: phosphorus ratio can even promote nitrogen limitation. These results are qualitatively robust, whether grazing functions are donor-controlled or recipient-controlled. We present a graphical analysis of these conditions based on the Zero Net Growth Isocline method.  相似文献   

16.
The effect of periphyton biomass on hydraulic characteristics and nutrient cycling was studied in laboratory streams with and without snail herbivores. Hydraulic characteristics, such as average water velocity, dispersion coefficients, and relative volume of transient storage zones (zones of stationary water), were quantified by performing short-term injections of a conservative tracer and fitting an advection-dispersion model to the conservative tracer concentration profile downstream from the injection site. Nutrient cycling was quantified by measuring two indices: (1) uptake rate of phosphorus from stream water normalized to gross primary production (GPP), a surrogate measure of total P demand, and (2) turnover rate of phosphorus in the periphyton matrix. These measures indicate the importance of internal cycling (within the periphyton matrix) in meeting the P demands of periphyton. Dense growths of filamentous diatoms and blue-green algae accumulated in the streams with no snails (high-biomass streams), whereas the periphyton communities in streams with snails consisted almost entirely of a thin layer of basal cells of Stigeoclonium sp. (low-biomass streams). Dispersion coefficients were significantly greater and transient storage zones were significantly larger in the high-biomass streams compared to the low-biomass streams. Rates of GPP-normalized P uptake from water and rates of P turnover in periphyton were significantly lower in high biomass than in low biomass periphyton communities, suggesting that a greater fraction of the P demand was met by recycling in the high biomass communities. Increases in streamwater P concentration significantly increased GPP-normalized P uptake in high biomass communities, suggesting diffusion limitation of nutrient transfer from stream water to algal cells in these communities. Our results demonstrate that accumulations of periphyton biomass can alter the hydraulic characteristics of streams, particularly by increasing transient storage zones, and can increase internal nutrient cycling. They suggest a close coupling of hydraulic characteristics and nutrient cycling processes in stream ecosystems.  相似文献   

17.
Antarctic terrestrial ecosystems are nutrient-poor and depend for their functioning in part on external nutrients. However, little is known about the relative importance of various sources. We measured external mineral nutrient sources (wind blown material, precipitation and guano) at three locations, the cold temperate oceanic Falkland Islands (51°76′S), and the Maritime Antarctic Signy (60°71′S) and Anchorage Islands (67°61′S). These islands differ in the level of vegetation development through different environmental constraints and historical factors. Total mineral nitrogen input differed considerably between the islands. During the 3 month summer period it amounted to 18 mg N m−2 on the Falkland Islands and 6 and 102 mg N m−2 at Signy and Anchorage Islands, respectively. The high value for Anchorage was a result of guano deposition. By measuring stable isotopic composition (δ15N) of the different nitrogen sources and the dominant plant species, we investigated the relative utilisation of each source by the vegetation at each island. We conclude that external mineral nitrogen inputs to Antarctic terrestrial ecosystems show great spatial variability, with the local presence of bird (or other vertebrate) colonies being particularly significant.  相似文献   

18.
The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.  相似文献   

19.
Restoration of mined Restionaceae-dominated peat bogs in northern New Zealand is currently initiated by establishing native vegetation cover to minimise erosion of the remaining peat. The relative effects of various restoration techniques on litter decomposition and microbial activity within experimental litter bags were investigated in a restoration trial established on a mined peat surface. Decomposition and microbial activity of litter were compared between four different restoration treatments: direct transfer of intact habitat ‘islands’; the addition of processed peat with seed; the addition of processed peat with no seed; and recently mined peat surface (a ‘do nothing’ restoration option), with the four treatments replicated at each of five distances from an undisturbed peat bog. Treatments were compared with an undisturbed peat bog (control). Litter decomposition and associated microbial respiration rates were significantly higher in the undisturbed peat bog sites than in any of the restoration treatments, but the technique used to restore mined peatlands did have a significant effect on these ecosystem process rates. Results suggest that ecosystem processes such as decomposition and microbial community activity recover faster with restoration techniques such as direct transfer of intact habitat islands, than with other techniques such as simple seed addition. However, even after 12 months, litter decomposition and microbial activity in restored habitats were still far from reaching the levels recorded in the undisturbed peat bog. In addition, there was a strong relationship between the effort (and cost) applied to plant community restoration treatments and the rate of decomposition and microbial community activity.  相似文献   

20.
Lips  Johanna M.  Duivenvoorden  Joost F. 《Oecologia》1996,108(1):138-150
A comparative litter fall study was made in five rain forest stands along a gradient of humus form development and soils in the Amazon lowlands of eastern Colombia. The total fine litter fall was highest in a plot on a well drained soil of the flood plain of the Caquetá River (1.07 kg · m-2 · y-1), lower in three plots on well drained upland soils (0.86, 0.69, and 0.68 kg · m-2 · y-1), and lowest in a plot on a poorly drained, upland podzolised soil (0.62 kg · m-2 · y-1). In the four upland plots, leaf litter fall patterns were highly associated, which points at climatic regulation. Litter resource quality, as represented by nutrient concentrations and area/weight ratio of the leaf litter fall, was comparatively high in the flood plain plot. In the upland plots, concentrations and fluxes of Ca, Mg, K, and P were as low as in oligotrophic central Amazonian upland forests. This questions generalisations that the western peripheral region of the Amazon basin should be less oligotrophic than central Amazonia. The upland plot on the podzolised soil showed the lowest concentrations and fluxes of N. Mean residence times of organic matter and nutrients in the L horizons hardly differed between the five plots, suggesting that edaphic properties and litter resource quality are of little importance in the first step of decomposition. Mean residence time of organic matter in all ectorganic horizons combined (estimated on the basis of litter input and necromass on the forest floor, and uncorrected for dead fine root input) varied from 1.0 y in the flood plain forest, 1.1–3.3 y in the well drained upland forests, and 10.2 y in the forest on the podzolised soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号