首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model   总被引:37,自引:3,他引:34  
The movement of dissolved organic carbon (DOC) through soils is an important process for the transport of carbon within ecosystems and the formation of soil organic matter. In some cases, DOC fluxes may also contribute to the carbon balance of terrestrial ecosystems; in most ecosystems, they are an important source of energy, carbon, and nutrient transfers from terrestrial to aquatic ecosystems. Despite their importance for terrestrial and aquatic biogeochemistry, these fluxes are rarely represented in conceptual or numerical models of terrestrial biogeochemistry. In part, this is due to the lack of a comprehensive understanding of the suite of processes that control DOC dynamics in soils. In this article, we synthesize information on the geochemical and biological factors that control DOC fluxes through soils. We focus on conceptual issues and quantitative evaluations of key process rates to present a general numerical model of DOC dynamics. We then test the sensitivity of the model to variation in the controlling parameters to highlight both the significance of DOC fluxes to terrestrial carbon processes and the key uncertainties that require additional experiments and data. Simulation model results indicate the importance of representing both root carbon inputs and soluble carbon fluxes to predict the quantity and distribution of soil carbon in soil layers. For a test case in a temperate forest, DOC contributed 25% of the total soil profile carbon, whereas roots provided the remainder. The analysis also shows that physical factors—most notably, sorption dynamics and hydrology—play the dominant role in regulating DOC losses from terrestrial ecosystems but that interactions between hydrology and microbial–DOC relationships are important in regulating the fluxes of DOC in the litter and surface soil horizons. The model also indicates that DOC fluxes to deeper soil layers can support a large fraction (up to 30%) of microbial activity below 40 cm. Received 14 January 2000; accepted 6 September 2000  相似文献   

2.
Carbon (C) metabolism is at the core of ecosystem function. Decomposers play a critical role in this metabolism as they drive soil C cycle by mineralizing organic matter to CO(2) . Their growth depends on the carbon-use efficiency (CUE), defined as the ratio of growth over C uptake. By definition, high CUE promotes growth and possibly C stabilization in soils, while low CUE favors respiration. Despite the importance of this variable, flexibility in CUE for terrestrial decomposers is still poorly characterized and is not represented in most biogeochemical models. Here, we synthesize the theoretical and empirical basis of changes in CUE across aquatic and terrestrial ecosystems, highlighting common patterns and hypothesizing changes in CUE under future climates. Both theoretical considerations and empirical evidence from aquatic organisms indicate that CUE decreases as temperature increases and nutrient availability decreases. More limited evidence shows a similar sensitivity of CUE to temperature and nutrient availability in terrestrial decomposers. Increasing CUE with improved nutrient availability might explain observed declines in respiration from fertilized stands, while decreased CUE with increasing temperature and plant C?:?N ratios might decrease soil C storage. Current biogeochemical models could be improved by accounting for these CUE responses along environmental and stoichiometric gradients.  相似文献   

3.
Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.  相似文献   

4.
A study of body size and the compactness profile parameters of the humerus of 37 species of lissamphibians demonstrates a relationship between lifestyle (aquatic, amphibious or terrestrial) and bone microstructure. Multiple linear regressions and variance partitioning with Phylogenetic eigenVector Regressions reveal an ecological and a phylogenetic signal in some body size and compactness profile parameters. Linear discriminant analyses segregate the various lifestyles (aquatic vs. amphibious or terrestrial) with a success rate of up to 89.2%. The models built from data on the humerus discriminate aquatic taxa relatively well from the other taxa. However, like previous models built from data on the radius of amniotes or on the femur of lissamphibians, the new models do not discriminate amphibious taxa from terrestrial taxa on the basis of body size or compactness profile data. To make our inference method accessible, spreadsheets (see supplementary material on the website), which allow anyone to infer a lissamphibian lifestyle solely from body size and bone compactness parameters, were produced. No such easy implementation of habitat inference models is found in earlier papers on this topic.  相似文献   

5.
6.
Large lakes currently exhibit ecosystem responses to environmental changes such as climate and land use changes, nutrient loading, toxic contaminants, hydrological modifications and invasive species. These sources have impacted lake ecosystems over a number of years in various combinations and often in a spatially heterogeneous pattern. At the same time, many different kinds of mathematical models have been developed to help to understand ecosystem processes and improve cost-effective management. Here, the advantages and limitations of models and sources of uncertainty will be discussed. From these considerations and in view of the multiple environmental pressures, the following emerging issues still have to be met in order to improve the understanding of ecosystem function and management of large lakes: (1) the inclusion of thresholds and points-of-no-return; (2) construction of general models to simulate biogeochemical processes for a large number of lakes rather than for individual systems; (3) improvement of the understanding of spatio-temporal variability to quantify biogeochemical fluxes accurately; and (4) inclusion of biogeochemical linkages between terrestrial and aquatic ecosystems in model approaches to assess the effects of external environmental pressures such as land-use changes. The inclusion of the above-mentioned issues would substantially improve models as tools for the scientific understanding and cost-effective management of large lakes that are subject to multiple environmental pressures in a changing future.  相似文献   

7.
Modeling forest ecosystems is a landmark challenge in science, due to the complexity of the processes involved and their importance in predicting future planetary conditions. While there are a number of open-source forest biogeochemistry models, few papers exist detailing the software development approach used to develop these models. This has left many forest biogeochemistry models large, opaque and/or difficult to use, typically implemented in compiled languages for speed. Here, we present a forest biogeochemistry model from the SORTIE-PPA class of models, PPA-SiBGC. Our model is based on the perfect plasticity approximation with simple biogeochemistry compartments and uses empirical vegetation dynamics rather than detailed prognostic processes to drive the estimation of carbon and nitrogen fluxes. This allows our model to be used with traditional forest inventory data, making it widely applicable and simple to parameterize. We detail the conceptual design of the model as well as the software implementation in the R language for statistical computing. Our aim is to provide a useful tool for the biogeochemistry modeling community that demonstrates the importance of vegetation dynamics in biogeochemical models.  相似文献   

8.
1. Temporary rivers and streams are among the most common and most hydrologically dynamic freshwater ecosystems. The number of temporary rivers and the severity of flow intermittence may be increasing in regions affected by climatic drying trends or water abstraction. Despite their abundance, temporary rivers have been historically neglected by ecologists. A recent increase in temporary‐river research needs to be supported by new models that generate hypotheses and stimulate further research. In this article, we present three conceptual models that address spatial and temporal patterns in temporary‐river biodiversity and biogeochemistry. 2. Temporary rivers are characterised by the repeated onset and cessation of flow, and by complex hydrological dynamics in the longitudinal dimension. Longitudinal dynamics, such as advancing and retreating wetted fronts, hydrological connections and disconnections, and gradients in flow permanence, influence biotic communities and nutrient and organic matter processing. 3. The first conceptual model concerns connectivity between habitat patches. Variable connectivity suggests that the metacommunity and metapopulation concepts are applicable in temporary rivers. We predict that aggregations of local communities in the isolated water bodies of temporary rivers function as metacommunities. These metacommunities may become longitudinally nested due to interspecific differences in dispersal and mortality. The metapopulation concept applies to some temporary river species, but not all. In stable metapopulations, rates of local extinction are balanced by recolonisation. However, extinction and recolonisation in many temporary‐river species are decoupled by frequent disturbances, and populations of these species are usually expanding or contracting. 4. The second conceptual model predicts that large‐scale biodiversity varies as a function of aquatic and terrestrial patch dynamics and water‐level fluctuations. Habitat mosaics in temporary rivers change in composition and configuration in response to inundation and drying, and these changes elicit a range of biotic responses. In the model, aquatic biodiversity initially increases directly with water level due to increasing abundance of aquatic patches. When most of the channel is inundated and most aquatic patches are connected, further increases in aquatic habitat and connectivity cause aquatic biodiversity to decline due to community homogenisation and reduced habitat diversity. The predicted responses of terrestrial biodiversity to changes in water level are the inverse of aquatic biodiversity responses. 5. The third conceptual model represents temporary rivers as longitudinal, punctuated biogeochemical reactors. Advancing fronts carry water, solutes and particulate organic matter downstream; subsequent flow recessions and drying result in deposition of transported material in reserves such as pools and bar tops. Material processing is rapid during inundated periods and slower during dry periods. The efficiency of material processing is predicted to increase with the number of cycles of transport, deposition and processing that occur down the length of a temporary river. 6. We end with a call for conservation and resource management that addresses the unique properties of temporary rivers. Primary objectives for effective temporary river management are preservation or restoration of aquatic‐terrestrial habitat mosaics, preservation or restoration of natural flow intermittence, and identification of flow requirements for highly valued species and processes.  相似文献   

9.
Nutrient dynamics at the interface between surface waters and groundwaters   总被引:18,自引:0,他引:18  
1. The surface water/groundwater (SW/GW) interface is a crucial control point for lateral nutrient fluxes between uplands and aquatic ecosystems and for upstream/downstream (longitudinal) processes in lotic ecosystems. 2. Hydrological and biogeochemical dynamics of the SW/GW ecotone are linked to the degree of channel constraint and the sediment characteristics of the floodplain and stream bed. 3. The availability of specific chemical forms of electron donors and electron acceptors affects the spatial distribution of biogeochemical processes at the SW/GW interface. Temporal change in discharge is also a major factor affecting the rate and extent of these processes. 4. The magnitude of SW/GW interactions in lotic ecosystems is predicted to be a major determinant of solute retention. Channel morphology, stream bed composition and discharge are predicted to be important controls on SW/GW interactions. 5. Interdisciplinary research involving hydrologists, geomorphologists, aquatic ecologists, microbial ecologists and landscape ecologists is needed to further our present understanding of this critical interface linking terrestrial and aquatic ecosystems.  相似文献   

10.
The majority of deforested land in the Amazon Basin has become cattle pasture, making forest‐to‐pasture conversion an important contributor to the carbon (C) and climate dynamics of the region. However, our understanding of biogeochemical dynamics in pasturelands remains poor, especially when attempting to scale up predictions of C cycle changes. A wide range of pasture ages, soil types, management strategies, and climates make remote sensing the only realistic means to regionalize our understanding of pasture biogeochemistry and C cycling over such an enormous geographic area. However, the use of remote sensing has been impeded by a lack of effective links between variables that can be observed from satellites (e.g. live and senescent biomass) and variables that cannot be observed, but which may drive key changes in C storage and trace gas fluxes (e.g. soil nutrient status). We studied patterns in canopy biophysical–biochemical properties and soil biogeochemical processes along pasture age gradients on two important soil types in the central Amazon. Our goals were to (1) improve our understanding of the plot‐scale biogeochemical dynamics of this land‐use change, (2) evaluate the effects of pasture development on two contrasting soil types (clayey Oxisols and sandy Entisols), and (3) attempt to use remotely sensed variables to scale up the site‐specific variability in biogeochemical conditions of pasturelands. The biogeochemical analyses showed that (1) aboveground and soil C stocks decreased with pasture age on both clayey and sandy soils, (2) declines in plant biomass were well correlated with declines in soil C and with available phosphorus (P) and calcium (Ca), and (3) despite low initial values for total and available soil P, ecosystem P stocks declined further with pasture age, as did a number of other nutrients. Spectral mixture analysis of Landsat imagery provided estimates of photosynthetic vegetation (PV) and non‐photosynthetic vegetation (NPV) that were highly correlated with field measurements of these variables and plant biomass. In turn, the remotely sensed sum PV+NPV was well correlated with the changes in soil organic carbon and nitrogen, and available P and Ca. These results suggest that remote sensing can be an excellent indicator of not only pasture area, but of pasture condition and C storage, thereby greatly improving regional estimates of the environmental consequences of such land‐use change.  相似文献   

11.
Darcy-Hall TL  Hall SR 《Oecologia》2008,155(4):797-808
Short-term responses of producers highlight that key nutrients (e.g., N, P)—or combinations of these nutrients—limit primary production in aquatic and terrestrial ecosystems. These discoveries continue to provide highly valuable insights, but it remains important to ask whether nutrients always predominantly limit producers despite wide variation in nutrient supply and herbivory among systems. After all, predictions from simple food chain models (derived here) readily predict that limitation by grazers can exceed that by nutrients, given sufficient enrichment. However, shifts in composition of producers and/or increasing dominance of invulnerable stages of a producer can, in theory, reduce grazer limitation and retain primacy of nutrient limitation along nutrient supply gradients. We observed both mechanisms (inter- and intra-species variation in vulnerability to herbivory) working in a two-part mesocosm experiment. We incubated diverse benthic algal assemblages for several months either in the presence or absence of benthic macro-grazers in mesocosms that spread a broad range of nutrient supply. We then conducted short-term assays of nutrient and grazer limitation on these communities. In the “historically grazed” assemblages, we found shifts from more edible, better competitors to more resistant producers over enrichment gradients (as anticipated by the food web model built with a tradeoff in resistance vs. competitive abilities). However, contrary to our expectations, “historically ungrazed” assemblages became dominated by producers with vulnerable juvenile forms but inedible adult forms (long filaments). Consequently, we observed higher resource limitation rather than grazer limitation over this nutrient supply gradient in both “historically grazed” (expected) and “historically ungrazed” (not initially expected). Thus, via multiple, general mechanisms involving resistance to grazing (changes in species composition or variation in stage-structured vulnerability), producer assemblages should remain more strongly or as strongly limited by nutrients than grazers, even over large enrichment gradients. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Denitrification, the anaerobic reduction of nitrogen oxides to nitrogenous gases, is an extremely challenging process to measure and model. Much of this challenge arises from the fact that small areas (hotspots) and brief periods (hot moments) frequently account for a high percentage of the denitrification activity that occurs in both terrestrial and aquatic ecosystems. In this paper, we describe the prospects for incorporating hotspot and hot moment phenomena into denitrification models in terrestrial soils, the interface between terrestrial and aquatic ecosystems, and in aquatic ecosystems. Our analysis suggests that while our data needs are strongest for hot moments, the greatest modeling challenges are for hotspots. Given the increasing availability of high temporal frequency climate data, models are promising tools for evaluating the importance of hot moments such as freeze-thaw cycles and drying/rewetting events. Spatial hotspots are less tractable due to our inability to get high resolution spatial approximations of denitrification drivers such as carbon substrate. Investigators need to consider the types of hotspots and hot moments that might be occurring at small, medium, and large spatial scales in the particular ecosystem type they are working in before starting a study or developing a new model. New experimental design and heterogeneity quantification tools can then be applied from the outset and will result in better quantification and more robust and widely applicable denitrification models.  相似文献   

13.
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3× faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3× higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2–3× with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6× for red maple and up to 44× for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
15.
In light of current global changes to ecosystem function (e.g. climate change, trophic downgrading, and invasive species), there has been a recent surge of interest in exploring differences in nutrient cycling among ecosystem types. In particular, a growing awareness has emerged concerning the importance of scavenging in food web dynamics, although no studies have focused specifically on exploring differences in carrion consumption between aquatic and terrestrial ecosystems. In this forum we synthesize the scavenging literature to elucidate differences in scavenging dynamics between terrestrial and marine ecosystems, and identify areas where future research is needed to more clearly understand the role of carrion consumption in maintaining ecosystem function within each of these environments. Although scavenging plays a similar functional role in terrestrial and aquatic food webs, here we suggest that several fundamental differences exist in scavenging dynamics among these ecosystem types due to the unique selection pressures imposed by the physical properties of water and air. In particular, the movement of carcasses in marine ecosystems (e.g. wave action, upwelling, and sinking) diffuses biological activity associated with scavenging and decomposition across large, three‐dimensional spatial scales, creating a unique spatial disconnect between the processes of production, scavenging, and decomposition, which in contrast are tightly linked in terrestrial ecosystems. Moreover, the limited role of bacteria and temporal stability of environmental conditions on the sea floor appears to have facilitated the evolution of a much more diverse community of macrofauna that relies on carrion for a higher portion of its nutrient consumption than is present in terrestrial ecosystems. Our observations are further discussed as they pertain to the potential impacts of climate change and trophic downgrading (i.e. removal of apex consumers from ecosystems) on scavenging dynamics within marine and terrestrial ecosystems.  相似文献   

16.
Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle‐climate feedbacks are largely untested with respect to litter decomposition. We tested the litter decomposition parameterization of the community land model version 4 (CLM4), the terrestrial component of the community earth system model, with data from the long‐term intersite decomposition experiment team (LIDET). The LIDET dataset is a 10‐year study of litter decomposition at multiple sites across North America and Central America. We performed 10‐year litter decomposition simulations comparable with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes using the LIDET‐provided climatic decomposition index to constrain temperature and moisture effects on decomposition. We performed additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results show large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, and nitrogen immobilization is biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that soil mineral nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, independent of nitrogen limitation. CLM4 has low soil carbon in global earth system simulations. These results suggest that this bias arises, in part, from too rapid litter decomposition. More broadly, the terrestrial biogeochemistry of earth system models must be critically tested with observations, and the consequences of particular model choices must be documented. Long‐term litter decomposition experiments such as LIDET provide a real‐world process‐oriented benchmark to evaluate models.  相似文献   

17.
Variation in the elemental content of Eichhornia crassipes   总被引:1,自引:1,他引:0  
Summary The elemental composition of E. crassipes falls within the range of elemental values reported for other aquatic and terrestrial plants. Concentrations of macronutrients in water hyacinth biomass were not correlated with environmental levels of these nutrients. E. crassipes produces large, dense stands and dominates biogeochemical cycles in many aquatic ecosystems.This research is supported by Contract AT (38-1)-310 between the University of Georgia and the U. S. Atomic Energy Commission.  相似文献   

18.
Recent meta‐analyses confirm that the strength of trophic cascades (indirect positive effects of predators on plant biomass through control of herbivores) varies among ecosystem types. In particular, most terrestrial systems show smaller cascades than most aquatic ones. Ecologists still remain challenged to explain this variation. Here, we examine a food quality hypothesis which states that higher quality plants should promote stronger trophic cascades. Food quality involves two components: digestion resistance of plants and magnitude of stoichiometric imbalance between plants and herbivores (where stoichiometry involves ratios of nutrient:carbon ratio of tissues). Both factors vary among ecosystems and could mediate conversion efficiency of plants into new herbivores (and hence control of plants by herbivores). We explored the food quality hypothesis using two models, one assuming that plant stoichiometry is a fixed trait, the other one allowing this trait to vary dynamically (but with a minimal nutrient:carbon ratio of structural mass). Both models produce the same suite of results. First, as expected, systems with more easily digested plants promote stronger cascades. Second, contrary to expectations, higher (fixed or minimal) nutrient:carbon ratio of plants do not promote stronger cascades, largely because of the net result of ecosystem feedbacks. Still, the model with dynamic stoichiometry permits positive correlations of realized plant nutrient:carbon ratio and cascade strength (as predicted), mediated through digestion resistance. Third, lower nutrient:carbon ratio of herbivores promotes stronger cascades. However, this result likely cannot explain variation in cascade strength because nutrient:carbon stoichiometry of herbivores does not vary greatly between terrestrial and aquatic ecosystems. Finally, we found that predation promotes nutrient limitation of herbivores. This finding highlights that food web processes, such as predation, can influence stoichiometry‐mediated interactions of plants and herbivores.  相似文献   

19.
3个小型高原湖泊水陆交错带中植物叶片pH值变异及其潜在影响因素 陆生植物叶片pH值是与植物生理功能和养分利用状况息息相关的重要植物属性,并随植物功能型和环境的变化而变化。然而,水生植物叶片pH值的变异特征及其与陆生植物间的差异性仍不清楚。在3个自然形成的小型高原湖泊的湖滨植物群落中,我们采集植物、土壤和湖水样品,检测了植物叶片pH值与碳、氮含量以及环境条件(水或土壤pH值、土壤水位状况)。从植物功能型和群落两个水平分析了湖滨植物叶pH值沿水分梯度的变化及其潜在影响因素。研究结果表明,不同类型的水生植物,以及水生、沼生和陆生环境中生长的植物的叶pH存在较大差异;浮叶植物叶片pH值(4.21 ± 0.05)显著低于挺水植物(5.71 ± 0.07)和沉水植物(5.82 ± 0.06);水生草本植物叶片pH值(5.43 ± 0.10)显著低于沼生草本植物(6.12 ± 0.07)和陆生草本植物(5.74 ± 0.05);陆生草本植物叶片pH值显著高于木本植物。植物功能群间叶片pH值的变异可能与叶片的结构、光利用特性和养分特性有关。群落水平的结果与植物功能型水平相一致:水生群落叶片pH值显著低于陆生群落。群落水平叶片pH值可能主要受物种组成、水分条件和环境pH值的影响。本研究首次探索了水生植物的pH值,并且在景观尺度上对比了不同功能型植物的叶片pH值,为深入探索植物pH值变异机制以及其在水生和湿地生态系统中的生态意义提供参考。  相似文献   

20.
Nitrogen inputs into stream and river ecosystems, and the factors influencing those inputs, are important for various ecological and environmental concerns. Reliable information on where and how nitrogen compounds flow into aquatic ecosystems is indispensable to understanding the nutrient status of these ecosystems. Such information should include the biogeochemical mechanisms and hydrological controls of nutrient leaching into rivers from terrestrial systems such as forests, agricultural fields, and urbanized areas. Advancements in stable isotopomer measurements over the past two decades have expanded the variety of target substances and the precision with which they can be investigated. The high-throughput microbial denitrifier method allows for simultaneous measurement of nitrogen and oxygen isotope ratios and can provide high-resolution spatiotemporal information on both nitrate sources and biogeochemical processes. Although advanced techniques of stable isotope analysis have been used extensively to detect sources and estimate the relative contributions of multi-source systems in various rivers, there are still new horizons in investigating nitrogen transformations. For example, stable isotopes of oxygen (18O and 17O) occurring in nitrate due to atmospheric deposition can be used as natural tracers for evaluating internal nitrogen cycling; these isotopes are distinct from the oxygen within microbially generated nitrate in soils and water bodies. Another future challenge is improved use of nitrous oxide isotopomers in evaluating the relative contributions of nitrification and denitrification. Such analysis could provide insight into the nitrogen transformation that occurs under redox conditions at the boundary between terrestrial and aquatic systems, where nitrification and denitrification often occur simultaneously in soil and aquatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号