首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J A Finlay  M Strom  D E Ong  H F DeLuca 《Biochemistry》1990,29(20):4914-4921
Previously we purified and sequenced an 18-kDa chick duodenal protein that was modulated by 1,25-dihydroxyvitamin D3. The N-terminus of this protein has striking sequence homology to cellular retinol binding protein type II (CRBP II). Furthermore, this purified chick protein binds retinol. Antibodies have now been generated to the chick protein and used for immunoblot analysis to demonstrate that the chick protein has molecular weight, tissue distribution, and subcellular localization similar to rat CRBP II. These antibodies also cross-reacted with rat CRBP II. Antibodies to rat CRBP II cross-react with the chick protein. Northern analysis using a cDNA probe for rat CRBP II showed a single 860 base pair mRNA in both chick and rat intestinal RNA preparations. These results demonstrate that the 1,25-dihydroxyvitamin D3 modulated protein in chick embryonic organ culture is chick CRBP II. Pulse-chase experiments in chick embryonic duodenal organ culture strongly suggest that 1,25-dihydroxyvitamin D3 markedly decreases the synthesis of CRBP II, while not changing the degradation rate. The concentration of 1,25-dihydroxyvitamin D3 required for the decrease in CRBP II synthesis is approximately that required to stimulate calcium uptake into embryonic chick duodenal organ cultures.  相似文献   

2.
Two-dimensional electrophoresis together with radiolabeling experiments was used to examine cytosolic proteins of embryonic chick duodenum for responses to 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 caused a striking decrease in [3H]leucine content of an 18,000-dalton protein (approximate pI, 5.1) after a 10-min pulse with radioisotope followed by a 4-h chase. Decreased [14C]leucine content of the same protein was also observed at various times following 1,25-dihydroxyvitamin D3 addition to culture media; a significant decrease in radiolabel incorporation occurred within 30 min after addition of the hormone. The results argue that 1,25-dihydroxyvitamin D3 causes either a decreased synthesis rate or a post-translational modification of this protein. This change joins the biosynthesis of calcium-binding protein as an early event in the response of chick embryonic intestine to 1,25-dihydroxyvitamin D3.  相似文献   

3.
We synthesized a novel vitamin D analog, 22-hydroxyvitamin D3 9 and tested its biologic activity (and antivitamin properties) in vivo in vitamin D-deficient rats, and in vitro in the chick embryonic duodenum. We examined its ability to bind to the sterol carrier protein, vitamin D binding protein and the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. The new vitamin 9 was synthesized from 3 beta-hydroxy-22,23-dinorcholenic acid 1 in 12 steps. The vitamin 9 displayed no vitamin D agonist activity in the intestine or in bone in vivo and did not block the activity of vitamin D3 or 25-hydroxyvitamin D3. It was a weak vitamin D3 agonist in the chick embryonal duodenum in vitro. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. Vitamin 9 bound to the chick intestinal cytosol receptor with low affinity. 22-Hydroxyvitamin D3 and various vitamin D sterols were bound to vitamin D binding protein in the following order: 25-hydroxyvitamin D3. (24R)-24,25-dihydroxyvitamin D3, and (25S)-25,26-dihydroxyvitamin D3 greater than 22-hydroxyvitamin D3 greater than 11 alpha-hydroxyvitamin D3 greater than 1,25-dihydroxyvitamin D3 greater than vitamin D3. We conclude that the introduction of a hydroxyl group at C-22 in the side chain of the vitamin D3 molecule decreases its biological activity.  相似文献   

4.
5.
The appearance of the 1,25-dihydroxyvitamin D3 receptor in intestine, kidney, and chorioallantoic membrane of chick embryo was followed by sucrose density gradient sedimentation analysis and Scatchard plot analysis. The receptor from each of these organs sediments as a single 3.7S component. At 19 days of embryonic life, intestine had the highest specific 1,25-dihydroxyvitamin D3 binding activity followed by kidney and chorioallantoic membrane. The 1,25-dihydroxyvitamin D3 binding activity increased gradually at 12-15 days and rapidly until 20 days in intestine. In kidney, this protein increased rapidly from 12 to 16 days and did not change subsequently. In chorioallantoic membrane, the receptor increased slowly from 8 through 15 days, rapidly until 19 days, and decreased at 20 days. The injection of hydrocortisone into the chick embryo at 10 days increased receptor number in intestine, kidney, and chorioallantoic membrane by a factor of 2 at 12 days. Injection of this hormone after this time had little or no effect.  相似文献   

6.
In agreement with previous reports, chick intestinal calcium-binding protein does not appear in the chick embryo until 1 day after hatching while intestinal alkaline phosphatase begins to appear at 19–20 days of embryonic life. The ability of chick embryo to metabolize vitamin D3 to 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 is present at least by day 18 of embryonic life as demonstrated by in vivo and in vitro techniques. It also illustrates that metabolism of vitamin D3 was not the limiting factor in the appearance of calcium-binding protein and alkaline phosphatase in intestine. Instead, the uptake of 1,25-dihydroxyvitamin D3 by the duodenum was very low prior to hatching, even though significant amounts were present in the yolk sac. Injection of a physiological dose of 1,25-dihydroxyvitamin D3 to chick embryo at 9 days failed to stimulate appearance of calcium binding protein by 18 days of embryonic life. Thus, it appears that either the normal mechanism for transport of 1,25-dihydroxyvitamin D3 to intestine or its receptors in intestine may not be present prior to day 18–19.A large fraction of radioactive vitamin D3 injected into the yolk sac was found esterified especially in the embryonic liver. The significance of this is not yet understood.Injection of 1,25-dihydroxyvitamin D3 at 325 pmoles/per egg at 9 days resulted in 70% mortality of embryos while a 32-pmole dose resulted in no significant increase in mortality. The basis for this toxicity is not yet understood.  相似文献   

7.
We synthesized 3 beta-thiovitamin D3 from 7-dehydrocholesterol and tested its biological activity and protein binding properties. The thiovitamin was found to be a weak vitamin D agonist at high doses in vivo. It was poorly bound by both vitamin D-binding protein as well as by the intestinal cytosol receptor for 1,25-dihydroxyvitamin D. It did not increase the synthesis of calcium binding protein in the chick embryonic duodenum and did not block the activity of 1,25-dihydroxyvitamin D3 in this system. We conclude that 3 beta-thiovitamin D3 is a weak vitamin D agonist in vivo with no agonist activity or antagonist activity to 1,25-dihydroxyvitamin D3 in the chick embryonic duodenum.  相似文献   

8.
1,25-Dihydroxyvitamin D2 has been prepared from 25-hydroxyvitamin D2 using rachitic chick kidney mitochondria. This metabolite was highly purified by Sephadex LH-20 chromatography and by preparative high-pressure liquid chromatography. Its purity was assessed by analytical high-pressure liquid chromatography which revealed no other 254-nm absorbing material and by mass spectrometry. The concentration of dilute solutions of 1,25-dihydroxyvitamin D2 was determined by high-pressure liquid chromatography and deflection of the 254-nm column monitor. The 1,25-dihydroxyvitamin D2 was then shown to be 1/5 to 1/10 as active as 1,25-dihydroxyvitamin D3 in the chick while it had previously been shown to be equal in activity in the rat. Thus, discrimination against the vitamin D2 side chain by the chick persists in the metabolically active 1,25-dihydroxyvitamin D compounds.  相似文献   

9.
The provision of 1,25-dihydroxyvitamin D3 as the only source of dietary vitamin D3 to laying hens failed to support normal embryonic development in their fertile eggs. Significant (P less than .001) improvement in embryonic survival to hatching in these eggs resulted from injections of 1,25-dihydroxyvitamin D3, 24,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3, or 24,24-difluoro-25-hydroxyvitamin D3 prior to incubation. Maximum embryonic survival with lowest embryonic mortality was observed when 0.20 micrograms/egg of 1,25-dihydroxyvitamin D3 or 0.60 micrograms/egg 25-hydroxyvitamin D3 was injected. These results indicate that several forms of vitamin D, two of which cannot be converted to 24,25-dihydroxyvitamin D3, can provide this activity; and of the vitamin D compounds tested, 1,25-dihydroxyvitamin D3 may be the most active in supporting embryonic survival in the chick when delivered directly by injection.  相似文献   

10.
Vitamin D stimulates absorption of spd-glucose in chick jejunum and ileum by a specific action on the maximal velocity of Na+-gradient driven spd-glucose transport across the brush-border membrane of intestinal cells. Induction of spd-glucose transport by either vitamin D-3 or 1,25-dihydroxyvitamin D-3 in embryonic intestine can be blocked by inhibitors of RNA and protein synthesis.  相似文献   

11.
The technique of two-dimensional electrophoresis was used in combination with a highly sensitive silver stain to study vitamin D-dependent calcium-binding protein (CaBP) in rat kidney. Rat renal CaBP was shown to co-migrate almost exactly with CaBP purified from chick intestine suggesting evolutionary conservation of this protein. In some cases rat renal CaBP appeared not as a single polypeptide, but rather as a cluster of 4 polypeptides. Formation of the satellite cluster of CaBP in response to high doses of 1,25-dihydroxyvitamin D3 occurred in young rats which had been maintained on a vitamin D-deficient diet for 2 weeks, as well as in older rats which had been maintained on the same diet for 5 months. The 4 forms of CaBP were not the result of various states of Ca2+ binding, but rather the result of an enzymatic reaction. This was shown by 3 experiments. 1) Adding excess EGTA to samples containing the 4 satellite forms did not change the two-dimensional electrophoretogram. 2) Incubation of purified chick intestinal CaBP with kidney cytosols from D-deficient rats brought about the formation of the satellite CaBP forms from the chick protein. However, purified chick CaBP was unchanged by incubation in buffer alone for up to 2 h at 37 degrees C. 3) Placing rat kidney cytosols in a boiling water bath for 10 min inactivated the factor which generated the satellite forms as would be expected for an enzyme. The physiological significance of these forms of CaBP is as yet unknown.  相似文献   

12.
We synthesized 25-hydroxy-26,27-dimethylvitamin D3, 9, and 1,25-dihydroxy-26,27-dimethylvitamin D3, 14, from chol-5-enic acid-3 beta-ol and tested their biological activity in vivo and in vitro. 9 was found to be highly potent vitamin D analog with bioactivity similar to that of 25-hydroxyvitamin D3. 9 bound to rat plasma vitamin D binding protein with approximately one-third the affinity of 25-hydroxyvitamin D3. In a duodenal organ culture system and in a competitive binding assay with chick intestinal 1,25-dihydroxyvitamin D receptor, 9 was significantly more potent than 25-hydroxyvitamin D3. 1,25-Dihydroxy-26,27-dimethylvitamin D3, 14 was also highly active in vivo. At doses of 1000-5000 pmol/rat, its action was more sustained than that of 1,25-dihydroxyvitamin D3. 14 bound to vitamin D binding protein about 18 times less effectively than 1,25-dihydroxyvitamin D3. 14 bound to the chick intestinal cytosol receptor with an affinity one-half that of 1,25-dihydroxyvitamin D3. In a duodenal organ culture system, 14 was about half as active as 1,25-dihydroxyvitamin D3. Extension of the sterol side chain, at C-26 and C-27, by methylene groups, prolongs the bioactivity of a vitamin D sterol hydroxylated at C-1 and C-25; the corresponding sterol, hydroxylated only at C-25, does not show any alteration of its bioactivity in vivo. These newly synthesized analogs may potentially be of therapeutic use in various mineral disorders.  相似文献   

13.
1,25-Dihydroxyvitamin D3, the hormonal form of vitamin D, induces differentiation of HL-60 human promyelocytes into monocyte-like cells in vitro. We assessed the relative activity of 30 analogs of 1,25-dihydroxyvitamin D3 in inducing development of monocytic markers in HL-60 cells. The three differentiation markers assayed were nonspecific acid esterase activity, nitro blue tetrazolium reducing activity, and phagocytic capacity. Of the known metabolites of vitamin D, 1,25-dihydroxyvitamin D3 is the most active; 50% of the cells exhibit the mature phenotype following a 4-day treatment with 10(-8) M 1,25-dihydroxyvitamin D3. Removal of either the C-1 or C-25-hydroxyl group reduces activity by 2 orders of magnitude, while epimerization of the 1 alpha- to 1 beta-hydroxyl group virtually abolishes activity. Elongation of the steroidal side chain of 1,25-dihydroxyvitamin D3 by addition of one carbon at C-24 or C-26 improves the potency by an order of magnitude. Truncation of the steroidal side chain leads to a 10-fold reduction in activity for each carbon removed. Elimination of the C-26 and C-27 methyl groups reduces activity 100-fold. Analogs with short aliphatic side chains as 1 alpha-hydroxyhomo- and bishomopregnacholecalciferol have surprisingly high activity, being only 20-fold less potent than the natural hormone. The activity of most analogs in the HL-60 system parallels their known relative affinities for the well characterized 1,25-dihydroxyvitamin D3 receptor in chick intestine, providing further evidence that this function of 1,25-dihydroxyvitamin D3 is receptor mediated.  相似文献   

14.
G S Reddy  K Y Tserng 《Biochemistry》1989,28(4):1763-1769
About a decade ago calcitroic acid was isolated as a major side chain cleaved water-soluble metabolite of 1,25-dihydroxyvitamin D3 [Esvelt, R. P., Schnoes, H. K., & Decula, H. F. (1979) Biochemistry 18, 3977]. Presently, calcitroic acid is being considered as the major excretory form of 1,25-dihydroxyvitamin D3. However, the exact site or sites of calcitroic acid production and the possible side chain modified intermediary metabolites that may be formed during the conversion of 1,25-dihydroxyvitamin D3 into calcitroic acid are not fully understood. In the mean time there have been many advances in our understanding of the side-chain metabolism of 1,25-dihydroxyvitamin D3. It is now well established that both the kidney and the intestine metabolize 1,25-dihydroxyvitamin D3 through the C-24 oxidation pathway according to the following steps: 1,25-dihydroxyvitamin D3----1,24,25-trihydroxyvitamin D3----1,25-dihydroxy-24-oxovitamin D3-----1,23,25-trihydroxy-24-oxovitamin D3. Recently, we identified 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 (C-23 alcohol) as a major side chain cleaved lipid-soluble metabolite of 1,25-dihydroxyvitamin D3 and further extended the aforementioned C-24 oxidation pathway in the kidney by demonstrating 1,23,25-trihydroxy-24-oxovitamin D3 as the precursor of C-23 alcohol [Reddy, G. S., Tserng, K. Y., Thomas, B. R., Dayal, R., & Norman, A. W. (1987) Biochemistry 26, 324]. In this present study, we investigated the metabolic fate of 1,25-dihydroxyvitamin D3 (3 X 10(-10) M) in the perfused rat kidney and identified calcitroic acid as the major water-soluble metabolite of 1,25-dihydroxyvitamin D3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

16.
An improved radioreceptor assay for 1,25-dihydroxyvitamin D in human plasma   总被引:4,自引:0,他引:4  
We describe a modified assay technique for quantitating 1,25-dihydroxyvitamin D in plasma. The method involves a rapid extraction of the hormone using minicolumn (made of granular diatomaceous earth) chromatography followed by single-step purification on high-performance liquid chromatography. Quantitation of plasma 1,25-dihydroxyvitamin D is achieved by a radioligand receptor assay employing lyophilized cytosolic receptor protein from chick intestine and high-specific-activity 1,25-dihydroxy[3H]vitamin D3 (166 Ci/mmol). A new incubation medium including an ethanol extract of vitamin D-deficient chick serum yields high specific binding and improves the precision of the radioassay. Bound and free hormone are separated with dextran-coated charcoal of equivalent particle size. The method is sensitive to 0.5 pg/tube with a practical detection range of 1–20 pg/tube, permitting duplicate assay of endogenous 1,25-dihydroxyvitamin D in plasma volumes as small as 0.5 ml. The intra- and interassay coefficient of variation are 5 and 9%, respectively, and the method is valid over a wide-range sample dilution. This assay technique was applied to the measurement of plasma 1,25-dihydroxyvitamin D hormone concentration in normal young adults (55.2 ± 13.6 pg/ml; n = 20) and in patients with chronic renal failure (13.5 ± 5.2 pg/ml; n = 9) and primary hyperparathyroidism (83.3 ± 18 pg/ml; n = 10).  相似文献   

17.
Vitamin D compounds added to the culture medium induce HL-60 cells to differentiate into macrophage/monocytes via a receptor mechanism. This system provides a biologically relevant assay for the study of biopotency of vitamin D analogs. Using this system, the biological activity of various fluorinated derivatives of vitamin D3 was compared with that of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). As assessed by cell morphology, nitroblue tetrazolium reduction and nonspecific esterase activity, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3) and 26,26,26,27,27,27-hexafluoro-1,24-dihydroxyvitamin D3 (26,27-F6-1,24-(OH)2D3) were about 10 times as potent as 1,25-(OH)2D3 in suppressing HL-60 cell proliferation and inducing cell differentiation. The biological activity of 26,26,26,27,27,27-hexafluoro-1-hydroxyvitamin D3 (26,27-F6-1-OH-D3) was equal to that of 1,25-(OH)2D3 in this system. 1,25-(OH)2D3 and its fluorinated analogs exerted their effects on HL-60 cells in a dose-dependent manner. HL-60 cells have a specific receptor for 1,25-(OH)2D3 with an apparent Kd of 0.25 nM, identical with that of chick intestinal receptor. While the binding affinities of 26,27-F6-1,25-(OH)2D3 and 26,27-F6-1,24-(OH)2D3 for chick intestinal receptor were lower than that of 1,25-(OH)2D3 by factors of 3 and 1.5, respectively, they were as competent as 1,25-(OH)2D3 in binding to HL-60 cell receptor. The ability of 26,27-F6-1-OH-D3 to compete for receptor protein from HL-60 cells and chick intestine was about 1/70 that of 1,25-(OH)2D3. These results indicate that trifluorination of carbons 26 and 27 of vitamin D3 can markedly enhance the effect on HL-60 cells.  相似文献   

18.
A new metabolite of vitamin D3 was produced in vitro by perfusing rat kidneys with 1,25-dihydroxyvitamin D3 (4 X 10(-6) M). It was isolated and purified from the lipid extract of the kidney perfusate by high-performance liquid chromatography. By means of ultraviolet absorption spectrophotometry, mass spectrometry, chemical derivatization, and chemical synthesis, the new metabolite was identified as 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3. Along with the new metabolite, three other previously identified metabolites, namely, 1,24,25-trihydroxyvitamin D3, 1,25-dihydroxy-24-oxovitamin D3, and 1,23,25-trihydroxy-24-oxovitamin D3, were also isolated. The new metabolite was also formed when 1,23,25-trihydroxy-24-oxovitamin D3 was used as the substrate. Thus, the new metabolite fits into the following metabolic pathway: 1,25-dihydroxyvitamin D3----1,24(R),25-trihydroxyvitamin D3----1,25-dihydroxy-24-oxovitamin D3----1,23,25-trihydroxy-24-oxovitamin D3----1,23-dihydroxy-24,25,26,27-tetranorvitamin D3. Further, we used 1 alpha,25-dihydroxy[1 beta-3H]vitamin D3 in the kidney perfusion system and demonstrated 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 as the major further metabolite of 1,25-dihydroxyvitamin D3, circulating in the final perfusate when kidneys were perfused with 1,25-dihydroxyvitamin D3 (6 X 10(-10) M) for 4 h. The biological activity of 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 (C-3 alcohol) and its metabolic relationship to 1-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D3 (calcitroic acid or C-23 acid), the other previously identified side-chain cleavage metabolite of 1,25-dihydroxyvitamin D3, are unknown and are presently undergoing investigation.  相似文献   

19.
24R,24,25-Dihydroxyvitamin D3 is capable of inducing a minimal intestinal calcium transport response in chicks when compared to an equal amount of 25-hydroxyvitamin D3. 1,24,25-Trihydroxyvitamin D3 is also less active than 1,25-dihydroxyvitamin D3, and its activity is much shorter lived than that of 1,25-dihydroxyvitamin D3. A comparison of the metabolism of 25-hydroxy[26,27-3H]vitamin D3 and 24,25-dihydroxy[26,27-3H]vitamin D3 in the rat and chick shows that 24,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3 disappear at least 10 times more rapidly from the blood and intestine of chicks. Furthermore, examination of the excretory products from both of these species demonstrates that chicks receiving a single dose of 24,25-dihydroxy[26,27-3H]vitamin D3 excrete 66% of the total radioactivity by 48 hours, whereas rats receiving the same dose excrete less than one-half that amount. These results demonstrate that 24,25-dihydroxyvitamin D3 is considerably less biologically active in the chick than in the rat, probably due to more rapid metabolism and excretion.  相似文献   

20.
Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3   总被引:3,自引:0,他引:3  
Primary cultures of neonatal human foreskin keratinocytes converted 25-hydroxyvitamin D in high yield to a metabolite with the chromatographic behavior of 1,25-dihydroxyvitamin D3. The identity of this metabolite as 1,25-dihydroxyvitamin D3 was confirmed both by its potency in displacing 1,25-dihydroxyvitamin D3 in the chick cytosol receptor assay and by mass spectral analysis. These results suggest that 1,25-dihydroxyvitamin D3 may be formed in the epidermis to regulate vitamin D production by the epidermis and to provide an alternative to 1,25-dihydroxyvitamin D3 production by the kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号