首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Fos family of proteins now includes seven members: the retroviral proteins FBR-v-Fos and FBJ-v-Fos and the cellular proteins c-Fos, FosB, FosB2, Fra1, and Fra2. Four proteins (FBR-v-Fos, FBJ-v-Fos, c-Fos, and FosB) transform established rodent fibroblast cell lines, while three (FosB2, Fra1, and Fra2) do not. As all family members display sequence-specific DNA-binding activity as part of a heterodimeric complex with Jun proteins, other features must account for the differences in transforming potential. We demonstrate here that all transforming members have a C-terminal transactivation domain that is lacking in nontransforming members. The nontransforming proteins Fra1 and Fra2 can be converted to transforming proteins by fusion of a transactivation domain from either FosB or VP16. We also demonstrate that differences in the basic region-leucine zipper domain affecting either the affinity or sequence specificity of DNA binding are not determinants of the difference in transforming potential among members of the Fos family. The results further define the functional requirements for transformation by Fos proteins and suggest that the subunit composition of AP1 complexes is an important determinant of mitogenic signalling capability.  相似文献   

3.
Vas deferens epithelial cell subcultures were used to study the sequential regulation of jun/fos proto-oncogene expression and AP1 activities during cell proliferation, polarization and androgen-induced expression of a terminal differentiation marker, i. e. the mvdp gene. Proliferation of epithelial cells is associated with a high expression in the nucleus of most Jun and Fos oncoproteins. After cell seeding on an extracellular matrix which allows polarization and expression of the mvdp gene in response to androgens, AP1 protein accumulation is greatly altered and consists in a loss of JunB, Fra1, FosB and a decrease in c-Fos, c-Jun and Fra2, while JunD remained at the same level. This was correlated with a drop in AP1 binding activity as evaluated by gel shift assay using either AP1 consensus sequence or AP1 binding sites of the mvdp gene promoter region, and in AP1 transactivating activity, as estimated by stable transfection experiments using an AP1 responsive promoter (TRE-TK-luc). Androgens did not significantly influence AP1 activities. On the contrary, stimulation of AP1 proteins by the tumor-promoting phorbol ester caused a decrease in androgen-induced mvdp mRNA accumulation, and this effect was reversed by staurosporine, a potent inhibitor of PKC. Our data suggest that a down-regulation of AP1 activities induced by epithelial cell differentiation is a prerequisite to androgen-induced mvdp gene expression. The high AP1 activities observed during proliferative state or induced in TPA-treated polarized cells, exert a repressive effect on androgen action.  相似文献   

4.
5.
6.
7.
8.
Selective DNA bending by a variety of bZIP proteins.   总被引:19,自引:4,他引:15       下载免费PDF全文
We have investigated DNA bending by bZIP family proteins that can bind to the AP-1 site. DNA bending is widespread, although not universal, among members of this family. Different bZIP protein dimers induced distinct DNA bends. The DNA bend angles ranged from virtually 0 to greater than 40 degrees as measured by phasing analysis and were oriented toward both the major and the minor grooves at the center of the AP-1 site. The DNA bends induced by the various heterodimeric complexes suggested that each component of the complex induced an independent DNA bend as previously shown for Fos and Jun. The Fos-related proteins Fra1 and Fra2 bent DNA in the same orientation as Fos but induced smaller DNA bend angles. ATF2 also bent DNA toward the minor groove in heterodimers formed with Fos, Fra2, and Jun. CREB and ATF1, which favor binding to the CRE site, did not induce significant DNA bending. Zta, which is a divergent member of the bZIP family, bent DNA toward the major groove. A variety of DNA structures can therefore be induced at the AP-1 site through combinatorial interactions between different bZIP family proteins. This diversity of DNA structures may contribute to regulatory specificity among the plethora of proteins that can bind to the AP-1 site.  相似文献   

9.
10.
11.
12.
13.
We demonstrated previously that c‐Jun, JunB and c‐Fos RNA were dysregulated in metastatic melanoma cells compared with normal human melanocytes. The purpose of this study was to evaluate the distribution in composition of AP‐1 dimers in human melanoma pathogenesis. We investigated AP‐1 dimer pairing in radial growth phase‐like (RGP) (w3211) and vertical growth phase‐like (VGP) (w1205) human melanoma cells and metastatic cell lines (cloned from patients, c83‐2c, c81‐46A, A375, respectively) compared with melanocytes using electrophoretic mobility shift assay (EMSA), Western blot and transfection analyses. There are progressive variations in AP‐1 composition in different melanoma cell lines compared with normal melanocytes, in which c‐Jun, JunD and FosB were involved in AP‐1 complexes. In w3211, c‐Jun, JunD and Fra‐1 were involved in AP‐1 binding, while in w1205, overall AP‐1 binding activity was decreased significantly and supershift binding was detected only with JunD antibodies. In metastatic c81‐46A and A375 cells, only JunD was involved in AP‐1 binding activity, but in a third (c83‐2c) c‐Jun, JunD and Fra‐1 were present. Western blot evaluation detected c‐Jun in melanocytes and w3211, but this component was decreased significantly or was not detectable in w1205, c81‐46A and A375 cells. In contrast, JunD protein was elevated in c81‐46A and c83‐2c cells compared with melanocytes and RGP and VGP cell lines. Normal melanocytes and c83‐2c cells (which have c‐Jun involved in AP‐1 binding), transfected with c‐Jun antisense and treated with cisplatin, showed higher viability compared with untransfected cells, while in c81‐46A cells (in which only JunD is detectable) no change in cell viability was observed following treatment with cisplatin and c‐jun antisense transfection. A dominant‐negative c‐Jun mutant (TAM67) significantly increased the soft agar colony formation of w3211 and c83‐2c cells. These results suggest that components of AP‐1, especially c‐Jun, may offer a new target for the prevention or treatment of human melanoma progression.  相似文献   

14.
15.
16.
17.
18.
D J Bolland  J E Hewitt 《Gene》2001,271(1):43-49
The human SART1 gene was initially identified in a screen for proteins recognised by IgE, which may be implicated in atopic disease. We have examined the genomic structure and cDNA sequence of the SART1 gene in the compact genomes of the pufferfish Fugu rubripes and Tetraodon nigroviridis. The entire coding regions of both the Fugu and Tetraodon SART1 genes are contained within single exons. The Fugu gene contains only one intron located in the 5' untranslated region. Southern blot hybridisation of Fugu genomic DNA confirmed the SART1 gene to be single copy. Partial genomic structures were also determined for the human, mouse, Drosophila and C. elegans SART1 homologues. The human and mouse genes both contain many introns in the coding region, the human gene possessing at least 20 exons. The Drosophila and C. elegans homologues contain 6 and 12 exons, respectively. This is only the second time such a difference in the organization of homologous Fugu and human genes has been reported. The Fugu and Tetraodon SART1 genes encode putative proteins of 772 and 774 aa, respectively, each having 65% amino acid identity to human SART1. Leucine zipper and basic motifs are conserved in the predicted Fugu and Tetraodon proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号