首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effeet of long-term storage on the viability and regeneration eapacity of somatic embryogenic white spruce tissue (Picea glauca) was investigated. It was found that by keeping white spruce embryogenic tissue in serum-capped flasks at ambient temperatures, a viability of 80% could be maintained without subculturing for a period of over one year. Growth characteristics of the embryogenic tissue on solid medium and suspension cultures derived therefrom were essentially identical to the culture from which they originated. Ethylene and carbon dioxide accumulation peaked around days 8 to 10 in serum-capped cultures and declined thereafter during the short-term (20 days). When ethylene and carbon dioxide levels were measured over a period of five months, in flasks varying in their degree of gas tightness, it was found that those cultures that maintained higher carbon dioxide concentrations after five months remained viable and could be recultured under normal conditions. Development to cotyledon stage embryos from immature embryos could be obtained by exposure of the long-term storage material to 10 M ABA, and the number of maturing embryos was found to be similar to that of the original culture.  相似文献   

2.
Ethylene and carbon dioxide: regulation of oat mesocotyl growth   总被引:1,自引:1,他引:0  
Either ethylene or carbon dioxide stimulated the growth of oat mesocotyls in darkness, although the effect was much greater for carbon dioxide. Maximum elongation was obtained in the presence of both gases. Ethylene also induced lateral expansion of the mesocotyl: the volume of the mesocotyl was increased more in air with added ethylene than in air depleted of ethylene. Ethylene also stimulated mesocotyl growth under red light. Gibberellin only slightly increased mesocotyl length under red light and acted cooperatively with ethylene in the promotion of growth. The oat mesocotyl is a unique organ in terrestrial plants because ethylene simultaneously stimulates not only longitudinal growth but also lateral expansion. The ecological significance of oat mesocotyl growth in relation to the response to ethylene and carbon dioxide is discussed.  相似文献   

3.
The results of these studies demonstrate that carbon dioxide is required for the growth and maintenance of strains of fibroblasts derived from human tissues, strains FS4-705 and U12-705, from mouse tissue, strain L-705, and from rabbit tissues, strains RM3-56, RS1-56, and RT-56 in a chemically defined medium containing phosphite buffer in place of bicarbonate and supplemented with dialyzed serum and dialyzed embryo extract. Under these conditions, the cells fail to proliferate at a significant rate and begin to degenerate within 5 to 10 days when the flasks are not stoppered. Sufficient carbon dioxide is produced by the cells to promote growth as indicated by the fact that maximal proliferation is obtained in the same phosphite media when stoppered flasks are employed. With the exception of RS1-56, all the remaining strains tested can be propagated serially in open flasks containing phosphite medium prepared with whole serum and embryo extract. The rate of growth under these conditions, however, is only one-half to one-third that obtained in stoppered flasks containing phosphite medium or the conventional bicarbonate medium.  相似文献   

4.
The effects of gibberellic acid and kinetin with ethylene plus carbon dioxide on the thermodormancy of lettuce seeds (Lactuca sativa L. cv. Mesa 659) at 35 C in the dark were studied. The combination of gibberellic acid plus kinetin with ethylene plus carbon dioxide was most effective in overcoming thermodormancy in these Great Lakes type seeds, alleviating any induced light requirement. Gibberellic acid action required at least a minimal level of ethylene plus carbon dioxide. Kinetin action was independent of ethylene plus carbon dioxide but interacted with the gases when the gases were added. A schematic representation of the interaction is presented.  相似文献   

5.
Growth of and endopolygalacturonase production by Sclerotium rolfsii was better on a defined mineral medium than on a medium containing segments of tomato leaf petioles. The effect of treatment with ethylene (10μl/l) upon endopolygalacturonase activity with investigated at various stages of growth, in a mineral defined medium. Addition of ethylene to a 10 days-old culture of S. rolfsii resulted in a decrease in activity by day 14, whereas the addition of ethylene to a 4, 6 and 8 days old cultures resulted in an increase in endopolygalacturonase activity. Ethylene seems to have little or no stimulating effect upon growth of S. rolfsii when applied after 8 days. However, inhibited fungal growth, after the addition of ethylene at earlier stages of growth, was obtained due to the depletion of oxygen from sealed culture flasks. Endopolygalacturonase was extracted and purified from control cultures after 14 days of growth. Fractionation of this enzyme protein on Sephadex G-100 gel filtration columns resulted in two peaks of activity measured by the release of reducing sugars from polygalacturonic acid (PGA).  相似文献   

6.
The carbon dioxide and ethylene concentrations in tomato fruit ( Lycopersicon esculentum cv. Castelmart) and their stage of ripeness (characteristic external color changes) were periodically measured in fruit attached to and detached from the plant. An external collection apparatus was attached to the surface of individual tomato fruit to permit non-destructive sampling of internal gases. The concentration of carbon dioxide and ethylene in the collection apparatus reached 95% of the concentration in the fruit after 8 h. Gas samples were collected every 24 h. A characteristic climacteric surge in carbon dioxide (2-fold) and ethylene (10-fold) concentration occurred coincident with ripening of detached tomato fruit. Fruit attached to the plant exhibited a climacteric rise in ethylene (20-fold) concentration during ripening, but only a linear increase in carbon dioxide concentration. The carbon dioxide concentration increases in attached fruit during ripening, but the increase is a continuation of the linear increase seen in both attached and detached fruit before ripening and does not exhibit the characteristic pattern normally associated with ripening climacteric fruit. In tomato fruit, it appears that a respiratory climacteric per se, which has been considered intrinsic to the ripening of certain fruit, may not be necessary for the ripening of "climacteric" fruit at all, but instead may be an artifact of using harvested fruit.  相似文献   

7.
Murine hybridomas were cultivated in tissue culture flasks. Dissolved oxygen tensions in the gas and liquid phases during cell growth were monitored. Oxygen levels were measured noninvasively by interrogating an oxygen-sensitive patch mounted on the interior surface of the tissue culture flask with an optrode from outside the tissue culture flask. Readings were made in tissue culture flasks with caps both cracked open and completely closed. Although the oxygen in the gas phase remained near atmospheric oxygen levels in both flasks, over time the liquid-phase oxygen tension at the bottom of the flasks reached zero during cell growth in both the open and closed tissue culture flasks. These results suggest that the widespread practice of cracking open tissue culture flask caps during cell growth with a view to supplying adequate oxygen to cells is ineffective and probably unnecessary.The mass transfer characteristics of the tissue culture flask were also studied. The dominant resistance to oxygen mass transfer to the sensor and the cells was through the liquid media. The mass transfer rates through the liquid layer under standard laboratory conditions were found to be greater than those predicted by diffusion alone. This suggests that mixing at a microscale occurs. Volumetric and specific oxygen consumption rates were also calculated from the sensor data. These consumption rates were comparable with values published elsewhere. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Summary Barley seeds have been germinated in gas mixtures containing ethylene (up to 20 vpm) and various amounts of oxygen (0.5–21.0 per cent). When oxygen was adequate, ethylene had no effect on germination but decreased root growth and increased top growth. Ethylene-treated roots were short, broad and curled. When inadequate oxygen slowed seedling growth, ethylene had no effect on roots but increased top growth. Effects of carbon dioxide concentration and of the residual effects of ethylene on seedling growth are also discussed.  相似文献   

9.
Volatile compounds produced by Trichoderma hamatum were tested for their capacity to suppress in vitro the growth of Alternaria citri, Bipolaris cynodontis, Bipolaris sorokiniana, Curvularia brachyspora, Curvularia lunata, Curvularia oryzae-sativae, Drechslera tritici-repentis, Rhizoctonia solani, Sclerotinia minor and Sclerotium rolfsii. The organisms were cultured in an apparatus made with two Erlenmeyer flasks assembled by their top parts. With the aid of the gas chromatographic technique the variation of carbon dioxide, oxygen and ethylene in the internal system was determined. Acetaldehyde and ethanol were not found. Due to the respiratory metabolism of T. hamatum the carbon dioxide level progressively increased while the oxygen content decreased. Ethylene production was low and after three days remained constant. Excepting C. oryzae-sativae and B. cynodontis the other species showed changes in the growth and development. These results suggest the inhibitory volatiles of T. hamatum as one possible mechanism of biological control.  相似文献   

10.
Summary An experimental system, in which gases of known composition were passed through flasks, was used to systematically study the effects of oxygen and carbon dioxide on plant cell growth. As expected, oxygen limiting conditions resulted in suppressed growth of Catharanthus roseus cultures. Oxygen limitations did not alter the amount of cell mass produced per gram of sugar consumed which suggests that the production of fermentative metabolites was limited. Varying levels of carbon dioxide were observed to have no effect on the growth rates of either C. roseus or Daucus carota cultures. The amount of C. roseus cell mass generated per gram of sugar consumed appeared to be slightly increased at higher carbon dioxide levels.  相似文献   

11.
Ethylene losses and release were compared in four container- seal systems for in vitro cultures: Erlenmeyer flasks sealed with silicone, caoutchouc or styrene butadiene stoppers and glass bottles with screw caps supplied with caoutchouc septa. The last systems Proved to be the most suitable (i. e. minimum ethylene loss and release) to determine ethylene accumulation during axillary budding of lavandin ( Lavandula officinalis Chaix × Lavandula latifolia Villars cv. Grosso). Gelling agents (agar and Gelrite) also discharges ethylene and agar was identified as the main abiotic source. Mathematical elaboration of experimental data was then performed to estimate biological ethylene production.  相似文献   

12.
Summary Oxygen uptake, carbon dioxide evolution and nitrogenase activity, measured either as hydrogen evolution (under argon 80%, oxygen 20%) or as the reduction of acetylene to ethylene, were assayed over the same time period by a direct mass-spectrometric method. When carbon dioxide evolution was used to estimate carbohydrate consumption, the results agreed with other work on whole plants. The RQ values obtained in these experiments were always less than 1.0 and thus the carbohydrate consumption calculated from oxygen uptake suggests that previous estimates, using carbon dioxide evolution as a measure of the cost of nitrogen fixation may be underestimates. Lag periods observed in the reduction of acetylene to ethylene suggest that there is a resistance to diffusion of gases in the root nodules.  相似文献   

13.
Influence of Acetylene on Growth of Sulfate-Respiring Bacteria   总被引:4,自引:4,他引:0       下载免费PDF全文
At a concentration of 20% of the atmosphere of the culture flasks, acetylene inhibited growth and carbon dioxide production by Desulfovibrio desulfuricans and Desulfovibrio gigas. The bacteria did not reduce acetylene to ethylene, and neither acetylene dicarboxylic acid nor ethylene was inhibitory. At 10%, acetylene was partially inhibitory for the desulfovibrios. At 5%, acetylene impeded the rate but did not limit the extent of growth and catabolism of the desulfovibrios. Desulfotomaculum ruminis was affected only negligibly, if at all, by acetylene and ethylene at any of these concentrations.  相似文献   

14.
The increase in the concentration of atmospheric carbon dioxide is considered to be one of the main causes of global warming. As estimated by the Intergovernmental Panel on Climate Change (IPCC) criteria, about 10-15% of the gases emitted from the combustion coal being in the form of carbon dioxide. Microalgae and cyanobacteria can contribute to the reduction of atmospheric carbon dioxide by using this gas as carbon source. We cultivated the Scenedesmus obliquus and Spirulina sp. at 30 degrees C in a temperature-controlled three-stage serial tubular photobioreactor and determined the resistance of these organisms to limitation and excess of carbon dioxide and the capacity of the system to fix this greenhouse gas. After 5 days of cultivation under conditions of carbon limitation both organisms showed cell death. Spirulina sp. presenting better results for all parameters than S. obliquus. For Spirulina sp. the maximum specific growth rate and maximum productivity was 0.44 d(-1), 0.22 g L(-1)d(-1), both with 6% (v/v) carbon dioxide and maximum cellular concentration was 3.50 g L(-1) with 12% (v/v) carbon dioxide. Maximum daily carbon dioxide biofixation was 53.29% for 6% (v/v) carbon dioxide and 45.61% for 12% carbon dioxide to Spirulina sp. corresponding values for S. obliquus being 28.08% for 6% (v/v) carbon dioxide and 13.56% for 12% (v/v) carbon dioxide. The highest mean carbon dioxide fixation rates value was 37.9% to Spirulina sp. in the 6% carbon dioxide runs.  相似文献   

15.
A continuous flow system was used to study the interactions between carbon dioxide and ethylene in intact sunflower (Helianthus annuus L.) plants. An increase in the concentration of carbon dioxide above the ambient level (0.033%) in the atmosphere surrounding the plants increased the rate of ethylene production, and a decrease in carbon dioxide concentration resulted in a decrease in the rate of ethylene production. The change in the rate of ethylene production was evident within the first 15 minutes of the carbon dioxide treatment. Continuous treatment with carbon dioxide was required to maintain increased rate of ethylene production. The rate of carbon dioxide fixation increased in response to high carbon dioxide treatment up to 1.0%. Further increases in carbon dioxide concentration had no additional effect on carbon dioxide fixation. Carbon dioxide concentrations higher than 0.11% induced hyponasty of the leaves whereas treatment with 1 microliter per liter ethylene induced epinasty of the leaves.  相似文献   

16.
Suspension cells of Taxus chinensis were cultivated in both shake flasks and bioreactors. The production of taxuyunnanine C (TC) was greatly reduced when the cell cultures were transferred from shake flasks to bioreactors. Oxygen supply, shear stress and stripping-off of gaseous metabolites were considered as potential factors affecting the taxane accumulation in bioreactors. The effects of oxygen supply on the cell growth and metabolism were investigated in a stirred tank bioreactor by altering its oxygen transfer rate (OTR). It was found that both the pattern and amount of TC accumulation were not much changed within the range of OTR as investigated. Comparative studies on the cell cultivation in low shear and high shear generating bioreactors suggest that the decrease of TC formation in bioreactors was not due to the different shear environments in different cultivation vessels. An incorporation of 2% CO(2) in the inlet air was beneficial for the cell growth, but did not improve the TC production in bioreactors. Furthermore, the effects of different levels of ethylene addition into the inlet air on the cell growth and TC production were investigated in a bubble column reactor. The average cell growth rate increased from 0.146 to 0.204 d(-1) as the ethylene concentration was raised from 0 to 50 ppm, and both the content and production of TC were also greatly improved by ethylene addition. At an ethylene concentration of 18 ppm, the highest TC content and volumetric production in the reactor reached 13.28 mg/(g DW) and 163.7 mg/L, respectively, which were almost the same as those in shake flasks. Compared with the control reactor (bubble column without ethylene supplementation), the maximum TC content was increased by 82% and the total production of TC was doubled. The results indicate that ethylene is a key factor in scaling up the process of the suspension cultures of T. chinensis from a shake flask to a bioreactor.  相似文献   

17.
Exposing dark-grown seedlings for 3 d to oxygen deficiency (0or 5 kPa) or to additions of carbon dioxide (10 kPa) or ethylene(0·1 Pa) slowed shoot extension in Echinochloa oryzoides,while in rice it was promoted by these treatments, except that5 kPa oxygen was without effect. In E. oryzoides this was dueto reduced growth of the mesocotyl, and in rice to enhancedgrowth of the coleoptile. These responses to carbon dioxideand oxygen deficiency were not consequences of increased ethyleneproduction, since this remained unchanged by carbon dioxideand depressed by oxygen shortage in both species. Furthermore,exogenous ethylene and the ethylene action inhibitor 2,5-norbornadieneeach failed to influence extension in anoxic seedlings, indicatingno regulatory role for ethylene in the absence of oxygen. However,concentrations of the ethylene precursor 1 -aminocyclopropane-1-carboxylic acid (ACC) were increased by carbon dioxide and0 kPa or 5 kPa oxygen, although after 72 h without oxygen totalACC production (i.e. changes in ethylene + ACC + MACC) was suppressedin both species. There was little effect on bound ACC [putativemalonyl-ACC (MACC)] formation. Transferring anaerobic (0 kPa)seedlings to oxygenated conditions (21 kPa) resulted in abnormallyfast rates of ethylene formation, possibly due to the accumulationof ACC under anoxia. This post-anoxic ethylene may have contributedto the faster extension by rice coleoptiles and slower extensionby mesocotyls of E. oryzoides compared with those of seedlingsmaintained continuously in air. Echinochloa oryzoides [Ard.] Fritsch, barnyard grass, Oryza sativa L, rice, oxygen shortage, carbon dioxide, ethylene biosynthesis, shoot extension, 1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC, GC-MS  相似文献   

18.
The heat resistance of dry bacterial spores was tested in various gases at temperatures ranging from 121.1 to 160 C (250 to 320 F). Spores of Clostridium sporogenes (PA 3679) were heated in air, carbon dioxide, and helium; spores of Bacillus subtilis 5230 were heated in these gases and also in oxygen and in nitrogen. The surrounding gas influenced the heat resistance, but the differences among gases were small. D values were about 7 min at 148.9 C (300 F); z values were about 18.3 C (33 F) for B. subtilis, and about 21.7 C (39 F) for C. sporogenes. The resistance of B. subtilis in carbon dioxide was about the same as in air, but lower than in all other gases; resistance in helium and nitrogen was about the same, and was higher than in all other gases. C. sporogenes had the least resistance in air; the resistance was about the same in carbon dioxide and helium. For B. subtilis, the gases in order of increasing heat resistance were carbon dioxide, air, oxygen, helium, and nitrogen, and for C. sporogenes, air, carbon dioxide, and helium. Neither oxygen content nor molecular weight of the gas appeared to have a marked influence on dry-heat resistance of the spores, whereas the more inert gases seemed to yield larger D values.  相似文献   

19.
Germination, ethylene production, and carbon dioxide production by dormant Virginia-type peanuts were determined during treatments with plant growth regulators. Kinetin, benzylaminopurine, and 2-chloroethylphosphonic acid induced extensive germination above the water controls. Benzylaminopurine and 2-chloroethylphosphonic acid increased the germination of the more dormant basal seeds to a larger extent above the controls than the less dormant apical seeds. Coumarin induced a slight stimulation of germination while abscisic acid, 2,4-dichlorophenoxyacetic acid, and succinic acid 2,2-dimethylhydrazide did not stimulate germination above the controls. In addition to stimulating germination, the cytokinins also stimulated ethylene production by the seeds. In the case of benzylaminopurine, where the more dormant basal seeds were stimulated to germinate above the control to a larger extent than the less dormant apical seeds, correspondingly more ethylene production was induced in the basal seeds. However, the opposite was true of kinetin for both germination and ethylene production. When germination was extensively stimulated by the cytokinins, maximal ethylene and carbon dioxide evolution occurred at 24 and 72 hours, respectively. Abscisic acid inhibited ethylene production and germinaton of the seeds while carbon dioxide evolution was comparatively high. The crucial physiological event for germination of dormant peanut seeds was enhancement of ethylene production by the seeds.  相似文献   

20.
As a prelude to our studies on TL and Thy-1 differentiation alloantigens, three murine lymphobhastoid cell lines were examined for expression of these components. Optimal conditions for their mass culture were also determined. Several suspension culture systems were evaluated: (a) 50 ml through 500 ml Wheaton and Bellco spinner flasks as well as 1, 4, and 8 liter Wheaton flasks modified for semicontinuous culture conditions, (b) 3 liter Chemapec Vibrofermentor, and (c) 14 liter New Brunswick fermentor. Utilizing these types of vessels the optimal culture conditions were evaluated as to the effect of: (1) pH, (2) initial concentration of cell inoculum, (3) types of media, and (4) methods of gassing and gas mixtures on the rate of growth and alloantigen expression. This study demonstrated that cells could be cultured on a semicontinuous basis up to densities of 2–4 × 106 cells/ml if a vessel of appropriate dimensions was utilized, the appropriate medium selected, and the pH controlled by CO2 and air overlay. Once these parameters were established the growth of a given cell line was highly reproducible: Under optimal culture conditions the expression of Thy-1 was maximum while the cells were in the exponential stage of growth and reduced during the lag and stationary phases of growth. The expression of TL did not vary as significantly during the various stages of growth. One cell line grown in medium supplemented with 10% horse serum expressed lass Thy-1 than those grown in medium containing 10% fetal calf serum. The factors affecting cell growth and alloantigen expression have been considered in the design of a large-scale suspension culture facility for culturing 1000 liters of cells per week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号