首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heparan sulfates (HSs) are N- and O-sulfated polysaccharide components of proteoglycans, which are important constituents of the cell surface as well as the extracellular matrix. Heparin, with extensive clinical application as an anticoagulant, is a highly sulfated form of HS present within the granules of connective tissue type mast cells. The diverse functions of HS, which include the modulation of growth factor/cytokine activity, interaction with matrix proteins and binding of enzymes to cell surfaces, depend greatly on the presence of specific, high affinity regions on the chains. N-acetylglucosamine N-deacetylase/N-sulfotransferases, NDSTs, are an important group of enzymes in HS biosynthesis, initiating the sulfation of the polysaccharide chains and thus determining the generation of the high affinity sites. Here, we review the role of the four vertebrate NDSTs in HS biosynthesis as well as their regulated expression. The main emphasis is the phenotypes of mice lacking one or more of the NDSTs.  相似文献   

2.
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays essential physiological and pathophysiological functions. The biosynthesis of HS involves a series of specialised sulfotransferases, an epimerase and glycosyl transferases. The availability of these enzymes offers a promising method to prepare HS polysaccharides and structurally defined oligosaccharides. Given the fact that chemical synthesis of large HS oligosaccharides is extremely difficult, preparation of HS using a chemoenzymatic approach has gained momentum. This review article summarises recent progress on the development of a chemoenzymatic approach to prepare HS and HS oligosaccharides.  相似文献   

3.
Heparan sulfate (HS) polysaccharides interact with numerous proteins at the cell surface and orchestrate many different biological functions. Though many functions of HS are well established, only a few specific structures can be attributed to HS functions. The extreme diversity of HS makes chemical synthesis of specific bioactive HS structures a cumbersome and tedious undertaking that requires laborious and careful functional group manipulations. Now that many of the enzymes involved in HS biosynthesis are characterized, we show in this study how one can rapidly and easily assemble bioactive HS structures with a set of cloned enzymes. We have demonstrated the feasibility of this new approach to rapidly assemble antithrombin III-binding classical and non-classical anticoagulant polysaccharide structures for the first time.  相似文献   

4.
Heparan sulfate (HS), a highly sulfated polysaccharide, is biosynthesized through a pathway involving several enzymes. C(5)-epimerase (C(5)-epi) is a key enzyme in this pathway. C(5)-epi is known for being a two-way catalytic enzyme, displaying a "reversible" catalytic mode by converting a glucuronic acid to an iduronic acid residue, and vice versa. Here, we discovered that C(5)-epi can also serve as a one-way catalyst to convert a glucuronic acid to an iduronic acid residue, displaying an "irreversible" catalytic mode. Our data indicated that the reversible or irreversible catalytic mode strictly depends on the saccharide substrate structures. The biphasic mode of C(5)-epi offers a novel mechanism to regulate the biosynthesis of HS with the desired biological functions.  相似文献   

5.
Heparan sulfate (HS) is a highly sulfated polysaccharide that serves many biological functions, including regulating cell growth and inflammatory responses as well as the blood coagulation process. Heparanase is an enzyme that cleaves HS and is known to display a variety of pathophysiological effects in cancer, diabetes, and Alzheimer disease. The link between heparanase and diseases is a result of its selective cleavage of HS, which releases smaller HS fragments to enhance cell proliferation, migration, and invasion. Despite its importance in pathological diseases, the structural cues in HS that direct heparanase cleavage and the steps of HS depolymerization remain unknown. Here, we sought to probe the substrate specificity of heparanase using a series of structurally defined oligosaccharide substrates. The sites of heparanase cleavage on the oligosaccharide substrates were determined by mass spectrometry and gel permeation chromatography. We discovered that heparanase cleaves the linkage of glucuronic acid linked to glucosamine carrying 6-O-sulfo groups. Furthermore, our findings suggest that heparanase displays different cleavage modes by recognizing the structures of the nonreducing ends of the substrates. Our results deepen the understanding of the action mode of heparanase.  相似文献   

6.
Liu CC  Schultz PG 《Nature biotechnology》2006,24(11):1436-1440
Although tyrosine sulfation is a post-translational modification widespread across multicellular eukaryotes, its biological functions remain largely unknown. This is in part due to the difficulties of synthesizing selectively sulfated proteins. Here we report the selective incorporation of sulfotyrosine into proteins in bacteria by genetically encoding the modified amino acid in response to the amber nonsense codon TAG. Moreover, we show that this strategy enables direct expression in Escherichia coli of sulfo-hirudin, previously inaccessible through recombinant methods. The affinity of sulfo-hirudin toward human thrombin is enhanced more than tenfold over that of desulfo-hirudin, suggesting that sulfo-hirudin may offer clinical advantages for use as an anticoagulant. This general approach to the biosynthesis of sulfated proteins should facilitate further study and application of tyrosine sulfation.  相似文献   

7.
The structure and biological activities of a highly sulfated heparan sulfate (HS) extracted from shrimp (Penaeus brasiliensis) heads were characterized. Structurally the shrimp HS was more heterogenous than heparin, although it is still highly sulfated. The molecular mass of the shrimp HS preparation was determined to be 32.3 kDa by gel filtration HPLC. Analysis by surface plasmon resonance demonstrated that various growth/differentiation factors specifically bound to the shrimp HS with comparable affinity. Notably, the shrimp HS had a greater inhibitory effect against infections by dengue virus type 2 as well as Japanese encephalitis virus than heparin. Experiments on anticoagulant activity indicated that the shrimp HS exhibited significant anti-thrombin activity, but less than the commercial heparin. Hence, the HS preparation from shrimp heads, an industrial waste, is a prospective agent for a variety of clinical applications.  相似文献   

8.
A polysaccharide was isolated from marine green algae Monostroma latissimum, and its chemical characteristic and anticoagulant activity were investigated. The results demonstrated that the polysaccharide was high rhamnose-containing sulfated polysaccharide, and was mainly composed of 1,2-linked l-rhamnose residues with sulfate groups substituted at positions C-3 and/or C-4. The sulfated polysaccharide exhibited high anticoagulant activities by assays of the activated partial thromboplastin time (APTT) and thrombin time (TT). The anticoagulant property of the sulfated polysaccharide was mainly attributed to powerful potentiation thrombin by heparin cofactor II.  相似文献   

9.
Natural hexosaminoglycan heparin remains the most commonly prescribed anticoagulant in hospitalized patients. However its administration could induce side clinical events, including thrombocytopenia and bleeding. This explaines the need of development of alternative anticoagulant drugs based on modified heparin and polyanionic oligo- and polysaccharide derivatives, such as sulfated glucans, phosphomannans and fucoidans. Here we review the works on the synthesis of oligosaccharides related to low molecular weight hepain fragments and their derivatives, as well as oligosaccharides, which imitate parts of heparin chain responsible for biological activity. These works were aimed to develop the pharmaceutical preparations lacking ofheparin disadvantages.  相似文献   

10.
Heparan sulfate (HS) is a highly sulfated polysaccharide participated in essential physiological functions from regulating cell growth to blood coagulation. HS contains sulfated domains known as N-S domains and low sulfate domains known as N-Ac domains. The distribution of the domain structures is likely governed by the action of glucosaminyl N-deacetylase/N-sulfotransferase (NDST). Here, we sought to determine the substrate specificity of NDST using model substrates and recombinant NDST protein. We discovered that NDST-1 carries out the modification in a highly ordered fashion. The enzyme sulfates the substrate from the nonreducing end toward the reducing end consecutively, leading to the product with a cluster of N-sulfo glucosamine residues. Furthermore, a preexisting N-sulfo glucosamine residue prevents the action of NDST-1 at the residues immediately located at the nonreducing end, allowing the formation of an N-Ac domain. Our results provide the long sought evidence for understanding the formation of sulfated versus nonsulfated domains in the HS isolated from cells and tissues. The study demonstrates the regulating role of NDST-1 in mapping the sulfation patterns of HS.  相似文献   

11.
Natural glycosaminoglycan heparin remains the most commonly prescribed anticoagulant for hospitalized patients in modern medical practice. Unfortunately, its administration can be accompanied by a series of clinical side effects, including thrombocytopenia and bleeding. This determines the urgency of the development of alternative anticoagulant drugs based on modified heparin and polyanionic oligo- and polysaccharide derivatives, such as sulfated glucans, phosphomannans, and fucoidans. Here we review work on the synthesis of oligosaccharides corresponding to low-molecular-weight heparin fragments and their derivatives, as well as oligosaccharides imitating parts of heparin chains that are responsible for biological activity. The reviewed works were aimed at developing pharmaceutical preparations lacking the aforementioned disadvantages of heparin.  相似文献   

12.
Heparan sulfate (HS) is a randomly sulfated polysaccharide that is present on the cell surface and in the extracellular matrix. The sulfated structures of HS were synthesized by multiple HS sulfotransferases, thereby regulating various activities such as growth factor signaling, cell differentiation, and tumor metastasis. Therefore, if the sulfated structures of HS could be artificially controlled, those manipulations would help to understand the various functions depending on HS. However, little knowledge is currently available to realize the mechanisms controlling the expression of such enzymes. In this study, we found that the ratio of 6-O-sulfated disaccharides increased at 3?h after adrenaline stimulation in mouse fibroblast cells. Furthermore, adrenaline-induced up-regulation of HS 6-O-sulfotransferase-1 (6-OST-1) was controlled by Src-ERK1/2 signaling pathway. Finally, inhibiting the signaling pathways for 6-OST-1 intentionally suppressed the adrenaline-induced structural alteration of HS. These observations provide fundamental insights into the understanding of structural alterations in HS by extracellular cues.  相似文献   

13.
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are “ubiquitous” components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with “heparin-binding proteins” and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in “fully sulfated” sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide–protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.  相似文献   

14.
Heparan sulfate (HS) plays essential roles in assisting herpes simplex virus infection and other biological processes. The biosynthesis of HS includes numerous specialized sulfotransferases that generate a variety of sulfated saccharide sequences, conferring the selectivity of biological functions of HS. We report a structural study of human HS 3-O-sulfotransferase isoform 3 (3-OST-3), a key sulfotransferase that transfers a sulfuryl group to a specific glucosamine in HS generating an entry receptor for herpes simplex virus 1. We have obtained the crystal structure of 3-OST-3 at 1.95 A in a ternary complex with 3'-phosphoadenosine 5'-phosphate and a tetrasaccharide substrate. Mutational analyses were also performed on the residues involved in the binding of the substrate. Residues Gln255 and Lys368 are essential for the sulfotransferase activity and lie within hydrogen bonding distances to the carboxyl and sulfo groups of the uronic acid unit. These residues participate in the substrate recognition of 3-OST-3. This structure provides atomic level evidence for delineating the substrate recognition and catalytic mechanism for 3-OST-3.  相似文献   

15.
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine residue of heparan sulfate (HS) to form 3-O-sulfated HS. The 3-O-sulfated glucosamine residue contributes to two important biological functions of HS: binding to antithrombin and thereby carrying anticoagulant activity, and binding to herpes simplex viral envelope glycoprotein D to serve as an entry receptor for herpes simplex virus 1. A total of five HS 3-O-sulfotransferase isoforms were reported previously. Here we report the isolation and characterization of a novel HS 3-O-sulfotransferase isoform, designated as HS 3-O-sulfotransferase isoform 5 (3-OST-5). 3-OST-5 cDNA was isolated from a human placenta cDNA library and expressed in COS-7 cells. The disaccharide analysis of 3-OST-5-modified HS revealed that 3-OST-5 generated at least three 3-O-sulfated disaccharides as follows: IdoUA2S-AnMan3S, GlcUA-AnMan3S6S, and IdoUA2S-AnMan3S6S. Transfection of the plasmid expressing 3-OST-5 rendered wild type Chinese hamster ovary cells susceptible to the infection by herpes simplex virus 1, suggesting that 3-OST-5-modified HS serves as an entry receptor for herpes simplex virus 1. In addition, 3-OST-5-modified HS bound to herpes simplex viral envelope protein glycoprotein D. Furthermore, we found that 3-OST-5-modified HS also bound to antithrombin, suggesting that 3-OST-5 also produces anticoagulant HS. In summary, our results indicate that a new member of 3-OST family generates both anticoagulant HS and an entry receptor for herpes simplex virus 1. These results provide a new insight regarding the mechanism for the biosynthesis of biologically active HS.  相似文献   

16.
Marine red algae are an abundant source of sulfated galactans with potent anticoagulant activity. However, the specific structural motifs that confer biological activity remain to be elucidated. We have now isolated and purified a sulfated galactan from the marine red alga, Gellidium crinale. The structure of this polysaccharide was determined using NMR spectroscopy. It is composed of the repeating structure -4-alpha-Galp-(1-->3)-beta-Galp1--> but with a variable sulfation pattern. Clearly 15% of the total alpha-units are 2,3-di-sulfated and another 55% are 2-sulfated. No evidence for the occurrence of 3,6-anhydro alpha-galactose units was observed in the NMR spectra. We also compared the anticoagulant activity of this sulfated galactan with a polysaccharide from the species, Botryocladia occidentalis, with a similar saccharide chain but with higher amounts of 2,3-di-sulfated alpha-units. The sulfated galactan from G. crinale has a lower anticoagulant activity on a clotting assay when compared with the polysaccharide from B. occidentalis. When tested in assays using specific proteases and coagulation inhibitors, these two galactans showed significant differences in their activity. They do not differ in thrombin inhibition mediated by antithrombin, but in assays where heparin cofactor II replaces antithrombin, the sulfated galactan from G. crinale requires a significantly higher concentration to achieve the same inhibitory effect as the polysaccharide from B. occidentalis. In contrast, when factor Xa instead of thrombin is used as the target protease, the sulfated galactan from G. crinale is a more potent anticoagulant. These observations suggest that the proportion and/or the distribution of 2,3-di-sulfated alpha-units along the galactan chain may be a critical structural motif to promote the interaction of the protease with specific protease and coagulation inhibitors.  相似文献   

17.
X Qi  W Mao  Y Gao  Y Chen  Y Chen  C Zhao  N Li  C Wang  M Yan  C Lin  J Shan 《Carbohydrate polymers》2012,90(4):1804-1810
A sulfated polysaccharide FEP from marine green alga Enteromorpha clathrata was extracted with hot water and further purified by ion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that FEP was a high arabinose-containing sulfated polysaccharide with sulfate ester of 31.0%, and its average molecular weight was about 511kDa. The backbone of FEP was mainly composed of (1→4)-linked β-l-arabinopyranose residues with partially sulfate groups at the C-3 position. In vitro anticoagulant assay indicated that FEP effectively prolonged the activated partial thromboplastin time and thrombin time. The investigation demonstrated that FEP was a novel sulfated polysaccharide with different chemical characteristics from other sulfated polysaccharides from marine algae, and could be a potential source of anticoagulant.  相似文献   

18.
The major acidic polysaccharide from the brown alga Laminaria cichorioides is a complex and heterogeneous sulfated fucan. Its preponderant structure is a 2,3-disulfated, 4-linked alpha-fucose unit. The purified polysaccharide has a potent anticoagulant activity, as estimated by APTT assay ( approximately 40 IU/mg), which is mainly mediated by thrombin inhibition by heparin cofactor II. It also accelerates thrombin and factor Xa inhibition by antithrombin but at a lower potency. Sulfated fucan from L. cichorioides is a promising anticoagulant polysaccharide and a possible alternative for an antithrombotic compound due to its preferential heparin cofactor II-dependent activity.  相似文献   

19.
BackgroundHeparan sulfate (HS) is a sulfated linear polysaccharide on cell surfaces that plays an important role in physiological processes. HS is present in skeletal muscles but its detailed role in this tissue remains unclear.MethodsWe examined the role of HS in the differentiation of C2C12 cells, a mouse myoblast cell line. We also phenotyped the impact of HS deletion in mouse skeletal muscles on their functions by using Cre-loxP system.ResultsCRISPR-Cas9-dependent HS deletion or pharmacological removal of HS dramatically impaired myoblast differentiation of C2C12 cells. To confirm the importance of HS in vivo, we deleted Ext1, which encodes an enzyme essential for HS biosynthesis, specifically in the mouse skeletal muscles (referred to as mExt1CKO mice). Treadmill and wire hang tests demonstrated that mExt1CKO mice exhibited muscle weakness. The contraction of isolated soleus muscles from mExt1CKO mice was also impaired. Morphological examination of mExt1CKO muscle tissue under light and electron microscopes revealed smaller cross sectional areas and thinner myofibrils. Finally, a model of muscle regeneration following BaCl2 injection into the tibialis anterior muscle of mice demonstrated that mExt1CKO mice had reduced expression of myosin heavy chain and an increased number of centronucleated cells. This indicates that muscle regeneration after injury was attenuated in the absence of HS expression in muscle cells.SignificanceThese results demonstrate that HS plays an important role in skeletal muscle function by promoting differentiation.  相似文献   

20.
This overview attempts to cover, from a personal viewpoint, the development of the heparin field during the last four decades. In particular, it emphasizes the metamorphosis of heparan sulfate (HS), from a disturbing contaminant in heparin production to the present-day key player in cell and developmental biology. Our understanding of the structural properties of the polysaccharides has been greatly promoted by studies of their biosynthesis. We now have a fairly detailed view of the various enzymatic reactions, that convert the initial [4GlcA1-4GlcNAc1-]n polymer into sulfated products with highly variable proportions of GlcA/IdoA and of N-acetyl, N-sulfate and O-sulfate substituents. It is also recognized that the variously substituted domains of the polysaccharide serve to interact, in more or less specific fashion, with a multitude of proteins, and that these interactions are essential to the biological functions of the proteins. Molecular genetics has unravelled the gene structures for almost all of the enzymes required to synthesize a heparin or HS chain, and has shown that several of these proteins exhibit genetic polymorphism. While differences in substrate specificity between enzyme isoforms may help to explain the structural variability of, in particular, HS chains, we still only partly understand the key features of heparin/HS biosynthesis and its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号