首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the end of the embryonic period of human development, c-kit immunoreactive (c-kit IR) cells identifiable as interstitial cells of Cajal (ICC) are present in the oesophagus and stomach wall. In the small and large bowel, c-kit-IR cells appear later (in the small bowel at 9 weeks, and in the colon at 10-12 weeks), also in the MP region. The object of this study was to determine the timing of appearance and distribution of c-kit IR cells in the human embryonic and foetal duodenum. I used immunohistochemistry to examine the embryonic and foetal duodenum for cells expressing CD117 (Kit), expressed by mature ICC and ICC progenitor cells and CD34 to identify presumed ICC progenitors. Enteric plexuses were examined by way of antineuron-specific enolase and the differentiation of smooth muscle cells was studied using antidesmin antibodies. At the end of the embryonic period of development, c-kit IR cells were solely present in the proximal duodenum in the form of a wide belt of densely packed cells around the inception of the myenteric plexus (MP) ganglia. In the distal duodenum, c-kit IR cells emerged at the beginning of the foetal period in the form of thin rows of pleomorphic cells at the level of the MP. From the beginning of the fourth month, the differences in the distribution of ICC in the different portions of the duodenum were established, and this relationship was still present in later developmental stages. In fact, in the proximal duodenum, ICC of the MP (ICC-MP), ICC of the circular muscle (ICC-CM) and ICC of the septa (ICC-SEP) were present, and in the distal duodenum ICC-MP and ICC-SEP only. In conclusion, in the humans there is a difference in the timing and patterns of development of ICC in the proximal duodenum compared to the distal duodenum.  相似文献   

2.
The nitrergic innervation of the sphincter of Oddi (SO) and duodenum in the Australian brush-tailed possum and the possible association of this innervation with the neuropeptide vasoactive intestinal polypeptide (VIP) were investigated by using immunohistochemical localisation of nitric oxide synthase (NOS) and VIP, together with the general neuronal marker, protein gene product 9.5 (PGP9.5). Whole-mount preparations of the duodenum and attached SO without the mucosa, submucosa and circular muscle (n=12) were double- and triple-labelled. The density of myenteric nerve cell bodies of the SO in the more distal region (duodenal end) was significantly higher than that in the more proximal region. In the SO, approximately 50% of all cells were NOS-immunoreactive (IR), with 27% of the NOS-IR cells being VIP-IR. Within the duodenal myenteric plexus, NOS immunoreactivity was present in about 25% of all neurons, with 27% of these NOS-IR neurons also being VIP-IR, a similar proportion to that in the SO. Varicose nerve fibres with NOS and VIP immunoreactivity were present within the myenteric and submucous plexuses of the SO and duodenum, and in the circular and longitudinal muscle layers. The NOS-positive cells within both the SO and duodenum were unipolar, displaying a typical Dogiel type I morphology. The myenteric plexuses of the SO and duodenum were in direct continuity, with many interconnecting nerve trunks, some of which showed NOS and VIP immunoreactivity. Thus, the possum possesses an extensive NOS innervation of the SO and duodenum, with a significantly higher proportion of NOS-IR neurons within the SO, a subset of which contains VIP.  相似文献   

3.
The feline gastrointestinal (GI) tract is an important model for GI physiology but no immunohistochemical assessment of interstitial cells of Cajal (ICC) has been performed because of the lack of suitable antibodies. The aim of the present study was to investigate the various types of ICC and associated nerve structures in the pyloric sphincter region, by using immunohistochemistry and electron microscopy to complement functional studies. In the sphincter, ICC associated with Auerbach’s plexus (ICC-AP) were markedly decreased within a region of 6–8 mm in length, thereby forming an interruption in this network of ICC-AP, which is otherwise continuous from corpus to distal ileum. In contrast, intramuscular ICC (ICC-IM) were abundant within the pylorus, especially at the inner edge of the circular muscle adjacent to the submucosa. Similar distribution patterns of nerves positive for vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS) and substance P (SP) were encountered. Quantification showed a significantly higher number of ICC-IM and the various types of nerves in the pylorus compared with the circular muscle layers in the adjacent antrum and duodenum. Electron-microscopic studies demonstrated that ICC-IM were closely associated with enteric nerves through synapse-like junctions and with smooth muscle cells through gap junctions. Thus, for the first time, immunohistochemical studies have been successful in documenting the unique distribution of ICC in the feline pylorus. A lack of ICC-AP guarantees the distinct properties of antral and duodenal pacemaker activities. ICC-IM are associated with enteric nerves, which are concentrated in the inner portion of the circular muscle layer, being part of a unique innervation pattern of the sphincter. This study was supported by operating grants from the Canadian Institutes of Health Research (to J.D.H. and N.E.D.) and from the Canadian Association of Gastroenterology (to L.W.C.L.).  相似文献   

4.
The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.  相似文献   

5.
Cholecystokinin (CCK) activates the myenteric neurons of adult rats. The goal of this work is to determine the ontogeny of this activation by CCK-8 in the myenteric plexus of the duodenum (2 cm immediately following the pyloric sphincter aborally) and compare it with that of the dorsal vagal complex (DVC) - which occurs in 1-day old pups. Despite the existence of both of the CCK receptors, CCK1 and CCK2, in 4, 14, 21 and 35 day old rats, CCK-8 (0, 5, 10, 20 and 40 μg/kg, i.p.) increased Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) in the myenteric neurons of 21- and 35-day old rats but in the DVC of all age groups. As such, this belated activation of myenteric neurons by CCK-8 compared to the DVC may reflect a delayed role for these neurons in CCK-related functions.  相似文献   

6.
Several subtypes of the interstitial cells of Cajal (ICC) form networks that play a role in gastrointestinal motor control. ICC express c-kit and depend on signaling via Kit receptors for development and phenotype maintenance. At 7-8 weeks of development, c-kit-immunoreactive (c-kit-IR) cells are present in the human oesophagus, stomach and proximal duodenum wall. In the remaining small and large bowel, c-kit-IR cells appear later. The object of the present study is to determine the timing of the appearance of c-kit-IR ICC in the parts of the digestive tube originating from the midgut (distal duodenum, jejunum, ileum and proximal colon). Specimens were obtained from eight human embryos and 11 fetuses at 7-12 weeks of gestational age. The specimens were exposed to anti-c-kit antibodies to investigate ICC differentiation. The differentiation of enteric neurons and smooth muscle cells was immunohistochemically examined by using anti-PGP9,5 and anti-desmin antibodies, respectively. In the distal duodenum, jejunum and ileum, c-kit-IR cells emerged at week 9 at the level of the myenteric plexus in the form of a thin row of cells encircling the inception of the ganglia. These cells were multipolar or spindle-shaped with two long processes and corresponded to the ICC of the myenteric plexus. In the proximal colon, c-kit-IR cells emerged at week 9-10 in the form of two parallel belts of cells extending at the submucosal plexus and the myenteric plexus levels. We conclude that ICC develop following two different patterns in the human midgut.  相似文献   

7.
Helen E. Raybould   《Peptides》1991,12(6):1279-1283
The role of vagal afferent pathways and cholecystokinin (CCK) in mediating changes in gastric motor function after a meal was investigated in urethane-anesthetized rats. Proximal gastric motor function was measured manometrically, and nutrients were infused into an isolated segment of duodenum. Inhibition of gastric motility in response to duodenal infusion of protein (peptone or casein), but not carbohydrate (glucose), was significantly attenuated by administration of the CCK antagonist, L364,718. Selective ablation of vagal afferents by perineural treatment with the sensory neurotoxin, capsaicin, significantly reduced responses to both duodenal protein and glucose. These results suggest that protein in the duodenum decreases proximal gastric motor function via release of CCK and a vagal capsaicin-sensitive afferent pathway. In contrast, glucose acts via a capsaicin-sensitive vagal pathway not involving CCK. Thus separate neural and hormonal mechanisms mediate the effects of different nutrients in the duodenal feedback regulation of gastric motor function.  相似文献   

8.
Interstitial cells of Cajal (ICC) are interposed between enteric neurons and smooth muscle cells in gastrointestinal (GI) muscles. The specific relationships between these cells in the murine proximal colon were studied with conventional and immunoelectron microscopy and immunohistochemistry. Intramuscular interstitial cells (IC-IM) formed discrete networks within the circular muscle layer of the murine proximal colon. Nerve trunks ran in close association with IC-IM and individual nerve trunks came into close contact with multiple IC-IM. Conventional electron microscopy revealed very close (< or = 20 nm) associations between nerve fibers and IC-IM. Processes of IC-IM also formed close contacts with neighboring smooth muscle cells. At the points of close association between neurons and IC-IM, areas of membrane densification in both pre- and postjunctional cells were present, suggesting specialized contacts or synaptic-like structures. Similar points of contact between neurons and smooth muscle cells were extremely rare. Immunoelectron microscopy demonstrated that IC-IM formed close associations with neurons containing nitric oxide synthase-like immunoreactivity (NOS-LI) or vesicular acetylcholine transporter-like immunoreactivity (vAChT-LI), suggesting innervation by both inhibitory and excitatory motor neurons. IC-IM were also labeled with anti-NOS antibodies. These observations suggest that IC-IM are an integral part of the neuromuscular junction in the colon. These cells may be the primary site of innervation, and neural regulation of the musculature may occur via IC-IM.  相似文献   

9.
The effects of regional intra-arterial injections of substance P (SP) or efferent electrical stimulation of the vagal nerves on feline extrahepatic biliary motility were studied in anesthetized cats using a constant perfusion model. Each of these procedures elicited contractile motor responses of the gallbladder and the sphincter of Oddi. Since SP is present in feline vagal axons, these findings may indicate a role of SP in the vagal motor control of biliary motility. Immunocytochemically neurons with SP-like immunoreactivity were found in the smooth muscle layers of the biliary tree as well as adjacent to acetylcholinesterase-positive ganglion cells indicating either direct activation of smooth muscle cells and/or indirect activation via cholinergic neurons. Depending on the type of stimulation different SP mechanisms were demonstrated; exogenous SP induced contraction of both the sphincter and the gallbladder which were probably direct (resistant to atropine but sensitive to a SP analogue), while vagal stimulation elicited contraction of both regions via a mechanism sensitive to atropine and to a SP analogue.  相似文献   

10.
Previous observations suggest that glucagon-like peptide-1 (GLP-1) is released into the bloodstream only when dietary carbohydrate enters the duodenum at rates that exceed the absorptive capacity of the proximal small intestine to contact GLP-1 bearing mucosa in more distal bowel. The aims of this study were to determine the effects of modifying the length of small intestine exposed to glucose on plasma concentrations of GLP-1 and also glucose-dependent insulinotropic peptide (GIP), insulin, cholecystokinin (CCK) and ghrelin, and antropyloric pressures. Glucose was infused at 3.5 kcal/min into the duodenum of eight healthy males (age 18-59 yr) over 60 min on the first day into an isolated 60-cm segment of the proximal small intestine ("short-segment infusion"); on the second day, the same amount of glucose was infused with access to the entire small intestine ("long-segment infusion"). Plasma GLP-1 increased and ghrelin decreased (P < 0.05 for both) during the long-, but not the short-, segment infusion. By contrast, increases in plasma CCK and GIP did not differ between days. The rises in blood glucose and plasma insulin were greater during the long- than during the short-segment infusion (P < 0.05). During the long- but not the short-segment infusion, antral pressure waves (PWs) were suppressed (P < 0.05). Isolated pyloric PWs and basal pyloric pressure were stimulated on both days. In conclusion, the release of GLP-1 and ghrelin, but not CCK and GIP, is dependent upon >60 cm of the intestine being exposed to glucose.  相似文献   

11.
E H South  R C Ritter 《Peptides》1988,9(3):601-612
Capsaicin treatment destroys small primary sensory neurons including a subpopulation of vagal afferents. Intraperitoneal, fourth ventricular or perivagal application of capsaicin attenuated or abolished cholecystokinin (CCK)-induced suppression of food intake. Capsaicin applied to the thoracolumbar spinal cord or to the pyloric region of the stomach did not alter CCK-induced reductions of food intake. Intraperitoneal capsaicin treatment reduced substance P-like immunoreactivity (SPLI) in the spinal dorsal horn and parts of the dorsal hindbrain. SPLI depletion, therefore, served as a histochemical indicator of the spread of capsaicin from its site of application. Capsaicin applied directly to the vagal trunks did not reduce SPLI in the spinal cord or hindbrain. Intraventricular capsaicin reduced SPLI in the hindbrain but not in the spinal cord. These data indicate that localized capsaicin application attenuates CCK-induced suppression of food intake by impairing the function of either central or peripheral portions of vagal afferent neurons. The data also support the conclusion that intraperitoneal capsaicin attenuates CCK-induced suppression of feeding by impairing vagal sensory function.  相似文献   

12.
Morphology of the canine pyloric sphincter in relation to function   总被引:2,自引:0,他引:2  
The ultrastructure and immunocytochemistry of the canine distal pyloric muscle loop, the pyloric sphincter, were studied. Cells in this muscle were connected by gap junctions, fewer than in the antrum or corpus. The sphincter had a dense innervation and a sparse population of interstitial cells of Cajal. Most such cells were of the circular muscle type but a few were of the type in the myenteric plexus. Nerves were sometimes associated with interstitial cell profiles, but most nerves were neither close to nor associated with interstitial cells nor close to smooth muscle cells. Nerve profiles were characterized by an unusually high proportion of varicosities with a majority or a high proportion of large granular vesicles. Many of these were shown to contain material immunoreactive for vasoactive intestinal polypeptide (VIP) and some had substance P (SP) immunoreactive material. All were presumed to be peptidergic. VIP was present in a higher concentration in this muscle than in adjacent antral or duodenal circular muscle. Interstitial cells of Cajal made gap junctions to smooth muscle and to one another and might provide myogenic pacemaking activity for this muscle, but there was no evidence of a close or special relationship between nerves with VIP or SP and these cells. The absence of close relationships between nerves and either interstitial cells or smooth muscle cells leaves unanswered questions about the structural basis for previous observations of discrete excitatory responses or pyloric sphincter to single stimuli or nerves up to one per second. In conclusion, the structural observations suggest that this muscle has special neural and myogenic control systems and that interstitial cells may function to control myogenic activity of this muscle but not to mediate neural signals.  相似文献   

13.
The nitric oxide (NO) signaling pathway is a major nonadrenergic-noncholinergic transmitter mechanism in the enteric nervous system. Our aim was to localize the enzymes in question, i.e., neuronal nitric oxide synthase (nNOS), soluble guanylate cyclase (sGC), and cGMP-dependent kinase type I (cGK-I) in rat small intestine by indirect immunofluorescence. nNOS staining was found in neurons of the myenteric plexus and in varicose nerve fibers mainly in the circular muscle layer. The cells positive for neurokinin-1 (NK-1) receptor and c-kit (interstitial cells of Cajal, ICC) in the deep muscular plexus (DMP) did not show nNOS reactivity, but nNOS-positive nerve fibers were directly adjacent to them. sGC was found in flattened cells surrounding myenteric ganglia (periganglionic cells, PGC), in ICC of the DMP, faintly in smooth muscle cells (SMC), and in cells perivascularly scattered throughout the circular muscle layer. cGK-I immunoreactivity was found abundantly in PGC (which presumably are ICC), in ICC of DMP, in SMC of the innermost circular and longitudinal muscle layers, but less intensively in the outer circular layer. Weak cGK-I staining occurred in nerve cells within the myenteric and submucosal plexus. Conclusively the key enzymes of the NO signaling pathway are differentially distributed: Occurrence of nNOS exclusively in neurons and the presence of sGC and cGK-I predominantly in ICC suggest a sequence of neuronal NO release, activation of ICC, and consecutive smooth muscle relaxation. ICC of the DMP seem to be the primary targets for neurally released NO.  相似文献   

14.
The murine jejunum and lower esophageal sphincter (LES) were examined to determine the locations of various signaling molecules and their colocalization with caveolin-1 and one another. Caveolin-1 was present in punctate sites of the plasma membranes (PM) of all smooth muscles and diffusely in all classes of interstitial cells of Cajal (ICC; identified by c-kit immunoreactivity), ICC-myenteric plexus (MP), ICC-deep muscular plexus (DMP), ICC-serosa (ICC-S), and ICC-intramuscularis (IM). In general, all ICC also contained the L-type Ca(2+) (L-Ca(2+)) channel, the PM Ca(2+) pump, and the Na(+)/Ca(2+) exchanger-1 localized with caveolin-1. ICC in various sites also contained Ca(2+)-sequestering molecules such as calreticulin and calsequestrin. Calreticulin was present also in smooth muscle, frequently in the cytosol, whereas calsequestrin was present in skeletal muscle of the esophagus. Gap junction proteins connexin-43 and -40 were present in circular muscle of jejunum but not in longitudinal muscle or in LES. In some cases, these proteins were associated with ICC-DMP. The large-conductance Ca(2+)-activated K(+) channel was present in smooth muscle and skeletal muscle of esophagus and some ICC but was not colocalized with caveolin-1. These findings suggest that all ICC have several Ca(2+)-handling and -sequestering molecules, although the functions of only the L-Ca(2+) channel are currently known. They also suggest that gap junction proteins are located at sites where ultrastructural gap junctions are know to exist in circular muscle of intestine but not in other smooth muscles. These findings also point to the need to evaluate the function of Ca(2+) sequestration in ICC.  相似文献   

15.
It has been shown in the rat that endogenous cholecystokinin (CCK), released in response to the non-nutrient trypsin inhibitor camostat, reduces food intake at meals and increases Fos-like immunoreactivity (Fos-LI; a marker for neuronal activation) in the dorsal vagal complex (DVC) of the hindbrain but not the myenteric plexus of the duodenum and jejunum. Experiment 1: We examined Fos-LI in the myenteric and the submucosal plexuses of the gut in response to orogastric gavage of camostat in rats. As we reported previously, camostat failed to increase Fos-LI in the myenteric plexus. We show here that camostat increased Fos-LI in the submucosal plexus of the duodenum and jejunum. Camostat also increased Fos-LI in the DVC. Experiment 2: Pretreatment with devazepide, a specific CCK1 receptor antagonist abolished camostat-induced Fos-LI in the submucosal plexus and the DVC. Experiment 3: Bilateral subdiaphragmatic vagotomy reduced camostat-induced Fos-LI in the submucosal plexus approximately 40% and abolished it in the DVC. Conclusions: Activation of the submucosal plexus by cholecystokinin at the CCK1 receptor accompanies stimulation of the dorsal vagal complex of the hindbrain and inhibition of food intake. Unlike the submucosal plexus, activation of the myenteric plexus is not necessary for cholecystokinin's influence on the dorsal vagal complex and food intake. The lack of activation in the myenteric plexus after camostat stimulation, in contrast to nutrient releasers of CCK such as oleate, suggests that intestinal stimulants can either release different amounts of CCK or cause release of CCK from I cells with different molecular forms of CCK. This would suggest that CCK-8 is released by camostat and is not able to travel to the myenteric plexus while a more stable form of CCK such as CCK-58 can travel to this site that is further away from the I cell.  相似文献   

16.
In an attempt to identify the distribution and structure of vagal fibers and terminals in the gastroduodenal junction, vagal efferents were labeled in vivo by multiple injections of the fluorescent carbocyanine dye DiA into the dorsal motor nucleus (dmnX), and vagal afferents were anterogradely labeled by injections of DiI into the nodose ganglia of the same or separate rats. Thick frontal cryostat sections were analysed either with conventional or laser scanning confocal microscopy, using appropriate filter combinations and/or different wavelength laser excitation to distinguish the fluorescent tracers. Vagal efferent terminal-like structures were present in small ganglia within the circular sphincter muscle, which, in the absence of a well-developed, true myenteric plexus at this level, represent the myenteric ganglia. Furthermore, vagal efferent terminals were also present in submucosal ganglia, but were absent from mucosa, Brunner's glands and circular muscle fibers. Vagal afferent fibers and terminal-like structures were more abundant than efferents. The most prominent afferent terminals were profusely branching, large net-like aggregates of varicose fibers running within the connective tissue matrix predominantly parallel to the circular sphincter muscle bundles. Profusely arborizing, highly varicose endings were also present in large myenteric ganglia of the antrum and duodenum, in the modified intramuscular ganglia, and in submucosal ganglia. Additionally, afferent fibers and terminals were present throughout the mucosal lining of the gastroduodenal junction. The branching patterns of some vagal afferents suggested that individual axons produced multiple collaterals in different compartments. NADPH-diaphorase positive, possibly nitroxergic neurons were present in myenteric ganglia of the immediately adjacent antrum and duodenum, and fine varicose fibers entered the sphincter muscle from both sides, delineating the potential vagal inhibitory postganglionic innervation. These morphological results support the view of a rich and differentiated extrinsic neural control of this important gut region as suggested by functional studies.  相似文献   

17.
This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.  相似文献   

18.
This paper aimed at investigating the alterations in interstitial cells of Cajal (ICC) in the proximal, middle and distal colon of mice from 0-day to 56-day post-partum (P0–P56) by immunohistochemistry. The Kit+ ICC, which situated around myenteric nerve plexus (ICC–MY) were prominent at birth, meanwhile those cells within the smooth muscle layers (ICC–IM) and in the connective tissue beneath serosa (ICC–SS) began to appear. ICC–SM, which located at the submucosal border of circular muscle layer emerged at P6 in the proximal colon and subsequently in the distal colon at P8, and ICC in the oral side of colon revealed an earlier development in morphology and a higher density than that in the anal side. The density of ICC altered obviously during postnatal period, and the estimated total amount of ICC increased ~30 folds at P56 than that at P0. Some Kit+/Ki67+ and Kit+/BrdU+ cells were observed in ICC–MY, ICC–IM and ICC–SS, but not in ICC–SM from P0 to P24. Our result indicates a proximal to distal and transmural gradient development of ICC in the postnatal colon along with a dramatic increase of ICC cell number from neonatal to adult life, and an age-dependent proliferation of ICC is also involved.  相似文献   

19.
Ageing is associated with impaired neuromuscular function of the terminal gastrointestinal (GI) tract, which can result in chronic constipation, faecal impaction and incontinence. Interstitial cells of cajal (ICC) play an important role in regulation of intestinal smooth muscle contraction. However, changes in ICC volume with age in the terminal GI tract (the anal canal including the anal sphincter region and rectum) have not been studied. Here, the distribution, morphology and network volume of ICC in the terminal GI tract of 3‐ to 4‐month‐old and 26‐ to 28‐month‐old C57BL/6 mice were investigated. ICC were identified by immunofluorescence labelling of wholemount preparations with an antibody against c‐Kit. ICC network volume was measured by software‐based 3D volume rendering of confocal Z stacks. A significant reduction in ICC network volume per unit volume of muscle was measured in aged animals. No age‐associated change in ICC morphology was detected. The thickness of the circular muscle layer of the anal sphincter region and rectum increased with age, while that in the distal colon decreased. These results suggest that ageing is associated with a reduction in the network volume of ICC in the terminal GI tract, which may influence the normal function of these regions.  相似文献   

20.
Electrical and mechanical activity of the circular muscle layer in the rectoanal region of the gastrointestinal tract undergoes considerable changes in the site of dominant pacemaking activity, frequency, and waveform shape. The present study was performed to determine whether changes in the structural organization of the circular layer or in the density, distribution, and ultrastructure of interstitial cells of Cajal (ICC) could account for this heterogeneity in electrical and mechanical activities. Light microscopy revealed that the structural organization of the circular muscle layer underwent dramatic morphological changes, from a tightly packed layer with poorly defined septa in the proximal rectum to one of discrete muscle bundles separated by large septae in the internal anal sphincter. Kit immunohistochemistry revealed a dense network of ICC along the submucosal and myenteric borders in the rectum, whereas in the internal anal sphincter, ICC were located along the periphery of muscle bundles within the circular layer. Changes in electrical activity within the circular muscle layer can be partially explained by changes in the structure of the muscle layer and changes in the distribution of ICC in the rectoanal region of the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号