首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested.  相似文献   

2.
Chemical insecticides are the mainstay of contemporary control of human disease vectors. However, the spread of insecticide resistance and the emergence of new disease threats are creating an urgent need for alternative tools. This perspective paper explores whether biological control might be able to make a greater contribution to vector control in the future, and highlights some of the challenges in taking a technology from initial concept through to operational use. The aim is to stimulate a dialogue within biocontrol and vector control communities, in order to make sure that biological control tools can realize their full potential.  相似文献   

3.
登革热媒介昆虫抗药性的研究进展   总被引:7,自引:0,他引:7  
近年来,登革热在全球的流行迅速增长,埃及伊蚊Aedes aegypti(L.)和白纹伊蚊Aedes albopictus(Skuse)是登革热传播的主要媒介。目前,化学防治仍然是防治蚊虫的主要手段,每年化学杀虫剂的大量使用直接或间接地导致其产生了抗药性。关于埃及伊蚊和白纹伊蚊的抗药性研究,主要集中于DDT、有机磷和拟除虫菊酯类杀虫剂导致的抗药性,并已深入到抗药性分子机理的研究。文章就埃及伊蚊和白纹伊蚊对杀虫剂诱导的抗药性现状及抗性机理的研究进展进行综述。  相似文献   

4.
Interventions to control the vectors of human diseases, notably malaria, leishmaniasis and dengue, have relied mainly on the action of chemical insecticides. However, concerns have been raised regarding the management of insecticides in vector-borne disease-endemic countries. Our study aimed to analyze how vector control insecticides are managed in selected countries to extract lessons learned.A qualitative analysis of the situation of vector control insecticides management was conducted in six countries. Multi-stakeholder meetings and key informer interviews were conducted on aspects covering the pesticide lifecycle. Findings were compared and synthesized to extract lessons learned. Centrally executed guidelines and standards on the management of insecticides offered direction and control in most malaria programs, but were largely lacking from decentralized dengue programs, where practices of procurement, application, safety, storage, and disposal were variable between districts. Decentralized programs were better at facilitating participation of stakeholders and local communities and securing financing from local budgets. However, little coordination existed between malaria, visceral leishmaniasis and dengue programs within countries. Entomological capacity was concentrated in malaria programs at central level, while dengue and visceral leishmaniasis programs were missing out on expertise. Monitoring systems for insecticide resistance in malaria vectors were rarely used for dengue or visceral leishmaniasis vectors. Strategies for insecticide resistance management, where present, did not extend across programs or sectors in most countries. Dengue programs in most countries continued to rely on space spraying which, considering the realities on the ground, call for revision of international guidelines.Vector control programs in the selected countries were confronted with critical shortcomings in the procurement, application, safety measures, storage, and disposal of vector control insecticides, with implications for the efficiency, effectiveness, and safety of vector control. Further international support is needed to assist countries in situation analysis, action planning and development of national guidelines on vector control insecticide management.  相似文献   

5.
Increasing insecticide resistance requires strategies to prolong the use of highly effective vector control compounds. The use of combinations of insecticides with other insecticides and phytochemicals is one such strategy that is suitable for mosquito control. In bioassays with Aedes aegypti and Culex annulirostris mosquitoes, binary mixtures of phytochemicals with or without synthetic insecticides produced promising results when each was applied at a LC25 dose. All mixtures resulted in 100% mortality against Cx. annulirostris larvae within 24 h rather than the expected mortality of 50%. All mixtures acted synergistically against Ae. aegypti larvae within the first 24 h except for one mixture that showed an additive effect. We conclude that mixtures are more effective than insecticides or phytochemicals alone and that they enable a reduced dose to be applied for vector control potentially leading to improved resistance management and reduced costs.  相似文献   

6.
The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs) are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos resistance and varying rates of alterations in their susceptibility to pyrethroids. The effect of the CSI novaluron on these populations was also investigated. Novaluron was effective against all populations under laboratory conditions. Field-simulated assays with partial water replacement were conducted to evaluate novaluron persistence. Bioassays were continued until an adult emergence inhibition of at least 70% was attained. We found a residual effect of eight weeks under indoor conditions and novaluron persisted for five-six weeks in assays conducted in an external area. Our data show that novaluron is effective against the Ae. aegypti populations tested, regardless of their resistance to conventional chemical insecticides.  相似文献   

7.
The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.  相似文献   

8.
Malaria, dengue fever, and filariasis are three of the most common mosquito-borne diseases worldwide. Malaria and lymphatic filariasis can occur as concomitant human infections while also sharing common mosquito vectors. The overall prevalence and health significance of malaria and filariasis have made them top priorities for global elimination and control programmes. Pyrethroid resistance in anopheline mosquito vectors represents a highly significant problem to malaria control worldwide. Several methods have been proposed to mitigate insecticide resistance, including rotational use of insecticides with different modes of action. Anopheles sinensis, an important malaria and filariasis vector in Southeast Asia, represents an interesting mosquito species for examining the consequences of long-term insecticide rotation use on resistance. We examined insecticide resistance in two An. Sinensis populations from central and southern China against pyrethroids, organochlorines, organophosphates, and carbamates, which are the major classes of insecticides recommended for indoor residual spray. We found that the mosquito populations were highly resistant to the four classes of insecticides. High frequency of kdr mutation was revealed in the central population, whereas no kdr mutation was detected in the southern population. The frequency of G119S mutation in the ace-1 gene was moderate in both populations. The classification and regression trees (CART) statistical analysis found that metabolic detoxification was the most important resistance mechanism, whereas target site insensitivity of L1014 kdr mutation played a less important role. Our results indicate that metabolic detoxification was the dominant mechanism of resistance compared to target site insensitivity, and suggests that long-term rotational use of various insecticides has led An. sinensis to evolve a high insecticide resistance. This study highlights the complex network of mechanisms conferring multiple resistances to chemical insecticides in mosquito vectors and it has important implication for designing and implementing vector resistance management strategies.  相似文献   

9.
10.
BackgroundVisceral leishmaniasis (VL) is targeted for elimination as a public health problem in Nepal by 2023. For nearly three decades, the core vector control intervention in Nepal has been indoor residual spraying (IRS) with pyrethroids. Considering the long-term use of pyrethroids and the possible development of resistance in the vector Phlebotomus argentipes sand flies, we monitored the susceptibility status of their field populations to the insecticides of different classes, in villages with and without IRS activities in recent years.Methodology/Principal findingsSand flies were collected from villages with and without IRS in five VL endemic districts from August 2019 to November 2020. The WHO susceptibility test procedure was adopted using filter papers impregnated at the discriminating concentrations of insecticides of the following classes: pyrethroids (alpha-cypermethrin 0.05%, deltamethrin 0.05%, and lambda-cyhalothrin 0.05%), carbamates (bendiocarb 0.1%) and organophosphates (malathion 5%). Pyrethroid resistance intensity bioassays with papers impregnated with 5× of the discriminating concentrations, piperonyl butoxide (PBO) synergist-pyrethroid bioassays, and DDT cross-resistance bioassays were also performed. In the IRS villages, the vector sand flies were resistant (mortality rate <90%) to alpha-cypermethrin and possibly resistant (mortality rate 90–97%) to deltamethrin and lambda-cyhalothrin, while susceptibility to these insecticides was variable in the non-IRS villages. The vector was fully susceptible to bendiocarb and malathion in all villages. A delayed knockdown time (KDT50) with pyrethroids was observed in all villages. The pyrethroid resistance intensity was low, and the susceptibility improved at 5× of the discriminating concentrations. Enhanced pyrethroid susceptibility after pre-exposure to PBO and the DDT-pyrethroid cross-resistance were evident.Conclusions/SignificanceOur investigation showed that P. argentipes sand flies have emerged with pyrethroid resistance, suggesting the need to switch to alternative classes of insecticides such as organophosphates for IRS. We strongly recommend the regular and systematic monitoring of insecticide resistance in sand flies to optimize the efficiency of vector control interventions to sustain VL elimination efforts in Nepal.  相似文献   

11.
Introduction. The susceptibility of Anopheles albimanus to organophosphates, carbamates and pyrethroid insecticides was unknown in the Panama communities of Aguas Claras, Pintupo and Puente Bayano, located in the Amerindian Reservation of Madungandi. This region is considered a malaria transmission area, where An. albimanus is the main vector. Objective. The resistance to organophosphate insecticides, carbamates and pyrethroids was evaluated in field populations of the Anopheles albimanus in Panama. Materials and methods. Progeny of An. albimanus collected in three localities in the indigenous Madugandi region were exposed to bioassays of susceptibility to organophosphate insecticides (fenitrothion, malathion and chlorpyrifos), the carbamate (propoxur) and pyrethroids (deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin). The protocols were in accordance with those established for adult mosquitoes by World Health Organization. Results. The three strains of the An. albimanus were resistant to the pyrethroid insecticides deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin. Susceptibility remained for the organophosphate insecticides fenitrothion, malathion, chlorpyrifos, and the carbamate insecticide propoxur. Conclusion. The results provided important information to the vector control program, contributing to the application of new strategies on the use of insecticides, and thereby lengthening the life of the insecticide in use.  相似文献   

12.
IntroductionLymphatic filariasis causes long term morbidity and hampers the socio-economic status. Apart from the available treatments and medication, control of vector population Culex quinquefasciatus Say through the use of chemical insecticides is a widely applied strategy. However, the unrestrained application of these insecticides over many decades has led to resistance development in the vectors.MethodsIn order to determine the insecticide susceptibility/resistance status of Cx. quinquefasciatus from two filariasis endemic districts of West Bengal, India, wild mosquito populations were collected and assayed against six different insecticides and presence of L1014F; L1014S kdr mutations in the voltage-gated sodium channel gene was also screened along with the use of synergists to evaluate the role of major detoxifying enzymes in resistance development.ResultsThe collected mosquito populations showed severe resistance to insecticides and the two synergists used–PBO (piperonyl butoxide) and TPP (triphenyl phosphate), were unable to restore the susceptibility status of the vector thereupon pointing towards a minor role of metabolic enzymes. kdr mutations were present in the studied populations in varying percent with higher L1014F frequency indicating its association with the observed resistance to pyrethroids and DDT. This study reports L1014S mutation in Cx. quinquefasciatus for the first time.  相似文献   

13.
Triatoma infestans (Klug) is the main vector of Chagas disease, which is a public health concern in most Latin American countries. The prevention of Chagas disease is based on the chemical control of the vector using pyrethroid insecticides. In the last decade, different levels of deltamethrin resistance have been detected in certain areas of Argentina and Bolivia. Because of this, alternative non-pyrethroid insecticides from different chemical groups were evaluated against two T. infestans populations, NFS and El Malá, with the objective of finding new insecticides to control resistant insect populations. Toxicity to different insecticides was evaluated in a deltamethrin-susceptible and a deltamethrin-resistant population. Topical application of the insecticides fenitrothion and imidacloprid to first nymphs had lethal effects on both populations, producing 50% lethal dose (LD50) values that ranged from 5.2-28 ng/insect. However, amitraz, flubendiamide, ivermectin, indoxacarb and spinosad showed no insecticidal activity in first instars at the applied doses (LD50 > 200 ng/insect). Fenitrothion and imidacloprid were effective against both deltamethrin-susceptible and deltamethrin-resistant populations of T. infestans. Therefore, they may be considered alternative non-pyrethroid insecticides for the control of Chagas disease.  相似文献   

14.
Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.  相似文献   

15.
Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations.  相似文献   

16.
Current methods of broad area application of contact insecticides used in mosquito control are becoming less effective, primarily due to resistance within mosquito populations. New methods that can deliver ingestible insecticides are being investigated as a means to mitigate resistance. This study evaluated insecticide delivery through toxic sugar baits (TSB) and resulting mortality of susceptible and resistant strains of Aedes aegypti. Two Ae. aegypti strains were evaluated using a 1% boric acid TSB: the susceptible Orlando 1952 (ORL) strain and the resistant Puerto Rican (PR) strain. The TSB resulted in high mortality for both ORL and PR strain of Ae. aegypti. Average mortality of female mosquitoes given TSB was 90.8% for PR and 99.3% for ORL. Our study suggests that targeting resistant mosquitoes with ingestible insecticides through TSBs could be a viable alternative to current mosquito control strategies and should be considered when developing an integrated vector management program.  相似文献   

17.
Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean.  相似文献   

18.
Since the reintroduction of Aedes aegypti in the state of S o Paulo, in the middle of the 1980-decade, organophosphate insecticides are being used to control the dengue vector. In 1996, an annual program for monitoring the susceptibility of Ae. aegypti to the insecticides was implemented. Some of the results of this monitoring program are presented. Ae. aegypti populations from ten localities have been submitted to bioassays with the diagnostic dose of temephos and fenitrothion. Only two (Mar lia and Presidente Prudente) remain susceptible to both insecticides and one (Santos) exhibits true resistance. Ae. aegypti from the remaining localities showed an incipient altered susceptibility. Resistance ratios varied from 1.2 to 2.9 for temephos and from 1.5 to 3.2 to fenitrothion, indicating moderate levels of resistance. Biochemical assays did not detect alterations in the enzyme acetilcholinesterase, but indicated that resistance is associated with esterases.  相似文献   

19.
Selection of insensitive acetycholinesterase 1 (AChE1) has occurred in several mosquito species controlled with carbamate (CX) and organophosphate (OP) insecticides. In case of pyrethroid resistance, these insecticides represent an alternative for disease vector control program. Their heavy use in agriculture has selected resistant populations of Anopheles gambiae in West Africa. The evolution of resistance has to be studied to prevent, or at least slow down, the spread of resistant mosquito in wild populations. An. gambiae shares the same resistance mechanism to CX and OP insecticides as Culex pipiens, which was attributed to the G119S substitution in the AChE1 enzyme. By comparing resistant AChE1 from both species, we show here that similar resistance levels are obtained toward 10 insecticides of both classes. Moreover, similar AChE1 activity levels are recorded between either susceptible or resistant mosquitoes of both species. Enzymes belonging to both species seem thus to share identical properties. Consequently, we hypothesize that fitness cost associated with AChE1 insensitivity in C. pipiens mosquitoes should be similar in An. gambiae and thus be used in strategies to control resistant populations where malaria is prevalent.  相似文献   

20.
Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7-14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that 'slow acting' fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号