首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This mini-review of focussed on the information available on the molecular mechanisms by which NO controls the function of mitochondrial cytochrome c oxidase and thereby cell respiration. The reaction mechanisms are described as dissected in vitro and recently confirmed in cell cultures, whereby two reaction pathways have been identified, leading to accumulation of either the [a3(2+)NO]-nitrosyl or the [a3(3+)NO2-]-nitrite derivative of the enzyme. The experimental data and the theoretical computation analysis, supporting the hypothesis that one pathway prevails on the other depending on the electron flow level through the respiratory chain, are discussed. Finally, the patho-physiological implications of the reaction between NO and CcOX have been also outlined.  相似文献   

2.
Giuffrè A  Forte E  Brunori M  Sarti P 《FEBS letters》2005,579(11):2528-2532
It is relevant to cell physiology that nitric oxide (NO) reacts with both cytochrome oxidase (CcOX) and oxygenated myoglobin (MbO(2)). In this respect, it has been proposed [Pearce, L.L., et al. (2002) J. Biol. Chem. 277, 13556-13562] that (i) CcOX in turnover out-competes MbO(2) for NO, and (ii) NO bound to reduced CcOX is "metabolized" in the active site to nitrite by reacting with O(2). In contrast, rapid kinetics experiments reported in this study show that (i) upon mixing NO with MbO(2) and CcOX in turnover, MbO(2) out-competes the oxidase for NO and (ii) after mixing nitrosylated CcOX with O(2) in the presence of MbO(2), NO (and not nitrite) dissociates from the enzyme causing myoglobin oxidation.  相似文献   

3.
BACKGROUND: The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW: The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.  相似文献   

4.
Reversible inhibition of cytochrome c oxidase (CcOX) by nitric oxide (NO*) has potential physiological roles in the regulation of mitochondrial respiration, redox signaling, and apoptosis. However peroxynitrite (ONOO-), an oxidant formed from the reaction of NO* and superoxide, appears mostly detrimental to cell function. This occurs both through direct oxidant reactions and by decreasing the availability of NO* for interacting with CcOX. When isolated CcOX respires with ascorbate as a reducing substrate, the conversion of ONOO- to NO* is observed. It is not known whether this can be ascribed to a direct interaction of the enzyme with ONOO-. In this investigation, the role of ascorbate in this system was examined using polarographic methods to measure NO* production and CcOX activity simultaneously in both the purified enzyme and isolated mitochondria. It was found that ascorbate alone accounts for >90% of the NO* yield from ONOO- in the presence or absence of purified CcOX in turnover. The yield of NO was CcOX-independent but was dependent on ascorbate and ONOO- concentrations and was not affected by metal chelators. Consistent with this, the interaction of ONOO- with CcOX in respiring isolated mitochondria only yielded NO* when ascorbate was also present in the incubation. These observations are discussed in the context of ONOO-/ascorbate reactivity and the interaction of CcOX with reactive nitrogen species.  相似文献   

5.
The aim of this work is to review the information available on the molecular mechanisms by which the NO radical reversibly downregulates the function of cytochrome c oxidase (CcOX). The mechanisms of the reactions with NO elucidated over the past few years are described and discussed in the context of the inhibitory effects on the enzyme activity. Two alternative reaction pathways are presented whereby NO reacts with the catalytic intermediates of CcOX populated during turnover. The central idea is that at "cellular" concentrations of NO (相似文献   

6.
Micromolar nitric oxide (NO) rapidly (ms) inhibits cytochrome c oxidase in turnover with physiological substrates. Two reaction mechanisms have been identified leading, respectively, to formation of a nitrosyl- [a3(2+) -NO] or a nitrite- [a3(3+) -NO2-] derivative of the enzyme. In the presence of O2, the nitrosyl adduct recovers activity slowly, following NO displacement at k' approximately equal to 0.01 s(-1) (37 degrees C); the recovery of the nitrite adduct is much faster. Relevant to pathophysiology, the enzyme does not degrade NO by following the first mechanism, whereas by following the second one it promotes NO oxidation and disposal as nitrite/nitrate. The reaction between NO and cytochrome c oxidase has been investigated at different integration levels of the enzyme, including the in situ state, such as in mouse liver mitochondria or cultured human SY5Y neuroblastoma cells. The respiratory chain is inhibited by NO, either supplied exogenously or produced endogenously via the NO synthase activation. Inhibition of respiration is reversible, although it remains to be clarified whether reversibility is always full and how it depends on concentration of and time of exposure to NO. Oxygraphic measurements show that cultured cells or isolated state 4 mitochondria exposed to micromolar (or less) NO recover from NO inhibition rapidly, as if the nitrite reaction was predominant. Mitochondria in state 3 display a slightly more persistent inhibition than in state 4, possibly due to a higher accumulation of the nitrosyl adduct. Among a number of parameters that appear to control the switch over between the two mechanisms, the concentration of reductants (reduced cytochrome c) at the cytochrome c oxidase site has been proved to be the most relevant one.  相似文献   

7.
Nitric oxide (NO) or its derivatives (reactive nitrogen species, RNS) inhibit mitochondrial respiration in two different ways: (i) an acute, potent, and reversible inhibition of cytochrome oxidase by NO in competition with oxygen; and, (ii) irreversible inhibition of multiple sites by RNS. NO inhibition of respiration may impinge on cell death in several ways. Inhibition of respiration can cause necrosis and inhibit apoptosis due to ATP depletion, if glycolysis is also inhibited or is insufficient to compensate. Inhibition of neuronal respiration can result in excitotoxic death of neurons due to induced release of glutamate and activation of NMDA-type glutamate receptors. Inhibition of respiration may cause apoptosis in some cells, while inhibiting apoptosis in other cells, by mechanisms that are not clear. However, NO can induce (and inhibit) cell death by a variety of mechanisms unrelated to respiratory inhibition.  相似文献   

8.
Nitric oxide and mitochondrial respiration.   总被引:35,自引:0,他引:35  
Nitric oxide (NO) and its derivative peroxynitrite (ONOO-) inhibit mitochondrial respiration by distinct mechanisms. Low (nanomolar) concentrations of NO specifically inhibit cytochrome oxidase in competition with oxygen, and this inhibition is fully reversible when NO is removed. Higher concentrations of NO can inhibit the other respiratory chain complexes, probably by nitrosylating or oxidising protein thiols and removing iron from the iron-sulphur centres. Peroxynitrite causes irreversible inhibition of mitochondrial respiration and damage to a variety of mitochondrial components via oxidising reactions. Thus peroxynitrite inhibits or damages mitochondrial complexes I, II, IV and V, aconitase, creatine kinase, the mitochondrial membrane, mitochondrial DNA, superoxide dismutase, and induces mitochondrial swelling, depolarisation, calcium release and permeability transition. The NO inhibition of cytochrome oxidase may be involved in the physiological regulation of respiration rate, as indicated by the finding that isolated cells producing NO can regulate cellular respiration by this means, and the finding that inhibition of NO synthase in vivo causes a stimulation of tissue and whole body oxygen consumption. The recent finding that mitochondria may contain a NO synthase and can produce significant amounts of NO to regulate their own respiration also suggests this regulation may be important for physiological regulation of energy metabolism. However, definitive evidence that NO regulation of mitochondrial respiration occurs in vivo is still missing, and interpretation is complicated by the fact that NO appears to affect tissue respiration by cGMP-dependent mechanisms. The NO inhibition of cytochrome oxidase may also be involved in the cytotoxicity of NO, and may cause increased oxygen radical production by mitochondria, which may in turn lead to the generation of peroxynitrite. Mitochondrial damage by peroxynitrite may mediate the cytotoxicity of NO, and may be involved in a variety of pathologies.  相似文献   

9.
One of the principal mechanisms of nitrite inhibition of cellular respiration has been considered to be the interference with the action of iron-containing enzymes. In procaryotic systems, the effect of nitrite on cellular metabolism remains unclear. This study provides evidence which shows a direct inhibition by a low concentration of nitrite on a highly purified oxidase inPseudomonas aeruginosa. The inhibition pattern was observed and was consistent at cellular, electron-transport membranous, and enzymic (oxidase) levels. This implies that the mechanism of nitrite inhibition on bacterial respiration is due to a direct inhibition at the terminal site of oxygen reduction. The uncompetitive inhibition pattern shown by nitrite strongly suggested a mechanism quite different from those of classic cytochrome oxidase inhibitors such as cyanide, azide, and carbon monoxide.  相似文献   

10.
Frank B. Jensen 《BBA》2009,1787(7):841-862
Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation and cytoprotection from a comparative viewpoint, with focus on mammals and fish. Constitutive nitric oxide synthase activity results in similar plasma nitrite levels in mammals and fish, but nitrite can also be taken up across the gills in freshwater fish, which has implications for nitrite/NO levels and nitrite utilization in hypoxia. The nitrite reductase activity of deoxyhemoglobin is a major mechanism of NO generation from nitrite and may be involved in hypoxic vasodilation. Nitrite is readily transported across the erythrocyte membrane, and the transport is enhanced at low O2 saturation in some species. Also, nitrite preferentially reacts with deoxyhemoglobin rather than oxyhemoglobin at intermediate O2 saturations. The hemoglobin nitrite reductase activity depends on heme O2 affinity and redox potential and shows species differences within mammals and fish. The NO forming capacity is elevated in hypoxia-tolerant species. Nitrite-induced vasodilation is well documented, and many studies support a role of erythrocyte/hemoglobin-derived NO. Vasodilation can, however, also originate from nitrite reduction within the vessel wall, and at present there is no consensus regarding the relative importance of competing mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia-reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full understanding of the physiological role of nitrite.  相似文献   

11.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   

12.
Inhibition of hexavalent chromium [Cr(VI)] reduction due to nitrate and nitrite was observed during tests with Shewanella oneidensis MR-1 (previously named Shewanella putrefaciens MR-1 and henceforth referred to as MR-1). Initial Cr(VI) reduction rates were measured at various nitrite concentrations, and a mixed inhibition kinetic model was used to determine the kinetic parameters-maximum Cr(VI) reduction rate and inhibition constant [V(max,Cr(VI)) and K(i,Cr(VI))]. Values of V(max,Cr(VI)) and K(i,Cr(VI)) obtained with MR-1 cultures grown under denitrifying conditions were observed to be significantly different from the values obtained when the cultures were grown with fumarate as the terminal electron acceptor. It was also observed that a single V(max,Cr(VI)) and K(i,Cr(VI)) did not adequately describe the inhibition kinetics of either nitrate-grown or fumarate-grown cultures. The inhibition patterns indicate that Cr(VI) reduction in MR-1 is likely not limited to a single pathway, but occurs via different mechanisms some of which are dependent on growth conditions. Inhibition of nitrite reduction due to the presence of Cr(VI) was also studied, and the kinetic parameters V(max,NO2) and K(i,NO2) were determined. It was observed that these coefficients also differed significantly between MR-1 grown under denitrifying conditions and fumarate reducing conditions. The inhibition studies suggest the involvement of nitrite reductase in Cr(VI) reduction. Because nitrite reduction is part of the anaerobic respiration process, inhibition due to Cr(VI) might be a result of interaction with the components of the anaerobic respiration pathway such as nitrite reductase. Also, differences in the degree of inhibition of nitrite reduction activity by chromate at different growth conditions suggest that the toxicity mechanism of Cr(VI) might also be dependent on the conditions of growth. Cr(VI) reduction has been shown to occur via different pathways, but to our knowledge, multiple pathways within a single organism leading to Cr(VI) reduction has not been reported previously.  相似文献   

13.
There is recent evidence suggesting that nitrite anion (NO 2 (-)) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical-molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.  相似文献   

14.
NO reductase synthesis was investigated immunochemically and by activity assays in cells of Pseudomonas stutzeri ZoBell grown in continuous culture at discrete aeration levels, or in O2-limited batch cultures supplemented with N oxides as respiratory substrate. Under aerobic conditions, NO reductase was not expressed in P. stutzeri. Oxygen limitation in combination with the presence of nitrate or nitrite derepressed NO reductase synthesis. On transition from aerobic to anaerobic conditions in continuous culture, NO reductase was synthesized below 3% air saturation and reached maximum expression under anaerobic conditions. By use of mutant strains defective in nitrate respiration or nitrite respiration, the inducing effect of individual N oxides on NO reductase synthesis could be discriminated. Nitrite caused definite, concentration-dependent induction, while nitrate promoted moderate enzyme synthesis or amplified effects of nitrite. Exogenous nitric oxide (NO) in concentrations 25 M induced trace amounts of NO reductase; in higher concentrations it arrested cell growth. Nitrite reductase or NO reductase were not detected immunochemically under these conditions. NO generated as an intermediate appeared not to induce NO reductase significantly. Antiserum raised against the P. stutzeri NO reductase showed crossreaction with cell extracts from P. stutzeri JM300, but not with several other denitrifying pseudomonads or Paracoccus denitrificans.  相似文献   

15.
Nitric oxide (NO) and its derivatives inhibit mitochondrial respiration by a variety of means. Nanomolar concentrations of NO immediately, specifically and reversibly inhibit cytochrome oxidase in competition with oxygen, in isolated cytochrome oxidase, mitochondria, nerve terminals, cultured cells and tissues. Higher concentrations of NO and its derivatives (peroxynitrite, nitrogen dioxide or nitrosothiols) can cause irreversible inhibition of the respiratory chain, uncoupling, permeability transition, and/or cell death. Isolated mitochondria, cultured cells, isolated tissues and animals in vivo display respiratory inhibition by endogenously produced NO from constitutive isoforms of NO synthase (NOS), which may be largely mediated by NO inhibition of cytochrome oxidase. Cultured cells expressing the inducible isoform of NOS (iNOS) can acutely and reversibly inhibit their own cellular respiration and that of co-incubated cells due to NO inhibition of cytochrome oxidase, but after longer-term incubation result in irreversible inhibition of cellular respiration due to NO or its derivatives. Thus the NO inhibition of cytochrome oxidase may be involved in the physiological and/or pathological regulation of respiration rate, and its affinity for oxygen.  相似文献   

16.
This review presents some aspects of a concept of cellular evolution bearing a relationship to nitrate--nitrite respiration, the endosymbiosis theory, and the origin of NO synthase and nitrite reductase activity in heme-containing proteins. Analysis of structural and functional unity of the NO synthase and nitrite reductase systems suggests that these systems did not arise without any relation to evolutionarily ancient energetic systems of cells. The use of symmetry principles reveals commonalities among many electron transport chains which in the language of physics is called "invariance". This work also comparatively analyzes the nitric oxide cycle and the known nitrogen cycle. The ideas about evolution of the NO synthase and nitrite reductase systems developed here are clearly compatible with the endosymbiotic theory and the hypothesis that nitrate--nitrite respiration was a precursor of oxygen-dependent respiration.  相似文献   

17.
BACKGROUND: Class 1 haemoglobins (Hbs) are induced in plant cells under hypoxic conditions. They have a high affinity for oxygen, which is two orders of magnitude lower than that of cytochrome oxidase, permitting the utilization of oxygen by the molecule at extremely low oxygen concentrations. Their presence reduces the levels of nitric oxide (NO) that is produced from nitrate ion during hypoxia and improves the redox and energy status of the hypoxic cell. SCOPE: The mechanism by which Hb interacts with NO under hypoxic conditions in plants is examined, and the effects of Hb expression on metabolism and signal transduction are discussed. CONCLUSIONS: The accumulated evidence suggests that a metabolic pathway involving NO and Hb provides an alternative type of respiration to mitochondrial electron transport under limited oxygen. Hb in hypoxic plants acts as part of a soluble, terminal, NO dioxygenase system, yielding nitrate ion from the reaction of oxyHb with NO. NO is mainly formed due to anaerobic accumulation of nitrite. The overall reaction sequence, referred to as the Hb/NO cycle, consumes NADH and maintains ATP levels via an as yet unknown mechanism. Hb gene expression appears to influence signal transduction pathways, possibly through its effect on NO, as evidenced by phenotypic changes in normoxic Hb-varying transgenic plants. Ethylene levels are elevated when Hb gene expression is suppressed, which could be a factor leading to root aerenchyma formation during hypoxic stress.  相似文献   

18.
It was recently reported that chloramphenicol inhibits existing denitrification enzyme activity in sediments and carbon-starved cultures of "Pseudomonas denitrificans." Therefore, we studied the effect of chloramphenicol on denitrification by Flexibacter canadensis and "P. denitrificans." Production of N(inf2)O from nitrate by F. canadensis cells decreased as the concentration of chloramphenicol was increased, and 10.0 mM chloramphenicol completely inhibited N(inf2)O production. "P. denitrificans" was less sensitive to chloramphenicol, and production of N(inf2)O from nitrate was inhibited by only about 50% even in the presence of 10.0 mM chloramphenicol. These results suggested that inhibition of denitrification enzyme activity depended on the concentration of chloramphenicol. Increasing the concentration of chloramphenicol decreased the rate of production of nitrite from nitrate by F. canadensis cells, and the concentration of chloramphenicol which resulted in 50% inhibition of production of nitrite from nitrate was 2.5 mM. In contrast, the rates of production of nitrite from nitrate by intact cells and cell extracts of "P. denitrificans" were inhibited by only 58 and 54%, respectively, at a chloramphenicol concentration of 10.0 mM. Chloramphenicol caused accumulation of NO from nitrite but not from nitrate and inhibited NO consumption in F. canadensis; however, it had neither effect in "P. denitrificans." Chloramphenicol did not affect N(inf2)O consumption by these organisms. We concluded that chloramphenicol inhibits denitrification at the level of nitrate reduction and, in F. canadensis, also at the level of NO reduction.  相似文献   

19.
Yoon MY  Lee KM  Park Y  Yoon SS 《PloS one》2011,6(1):e16105
Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.  相似文献   

20.
Commonly used anesthetics induce widespread neuronal degeneration in the developing mammalian brain via the oxidative-stress-associated mitochondrial apoptosis pathway. Dysregulation of cytochrome oxidase (CcOX), the terminal oxidase of the electron transport chain, can result in reactive oxygen species (ROS) formation. Isoflurane has previously been shown to activate this enzyme. Carbon monoxide (CO), as a modulator of CcOX, is of interest because infants and children are routinely exposed to CO during low-flow anesthesia. We have recently demonstrated that low concentrations of CO limit and prevent isoflurane-induced neurotoxicity in the forebrains of newborn mice in a dose-dependent manner. However, the effect of CO on CcOX in the context of anesthetic-induced oxidative stress is unknown. Seven-day-old male CD-1 mice underwent 1 h exposure to 0 (air), 5, or 100 ppm CO in air with or without isoflurane. Exposure to isoflurane or CO independently increased CcOX kinetic activity and increased ROS within forebrain mitochondria. However, exposure to CO combined with isoflurane paradoxically limited CcOX activation and oxidative stress. There were no changes seen in steady-state levels of CcOX I protein, indicating post-translational modification of CcOX as an etiology for changes in enzyme activity. CO exposure led to differential effects on CcOX subunit I tyrosine phosphorylation depending on concentration, while combined exposure to isoflurane with CO markedly increased the enzyme phosphorylation state. Phosphorylation of tyrosine 304 of CcOX subunit I has been shown to result in strong enzyme inhibition, and the relative reduction in CcOX kinetics following exposure to CO combined with isoflurane may have been due, in part, to such phosphorylation. Taken together, the data suggest that CO modulates CcOX in the developing brain during isoflurane exposure, thereby limiting oxidative stress. These CO-mediated effects could have implications for the development of low-flow anesthesia in infants and children to prevent anesthesia-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号