首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite extensive culling of common vampire bats in Latin America, lethal human rabies outbreaks transmitted by this species are increasingly recognized, and livestock rabies occurs with striking frequency. To identify the individual and population-level factors driving rabies virus (RV) transmission in vampire bats, we conducted a longitudinal capture-recapture study in 20 vampire bat colonies spanning four regions of Peru. Serology demonstrated the circulation of RV in vampire bats from all regions in all years. Seroprevalence ranged from 3 to 28 per cent and was highest in juvenile and sub-adult bats. RV exposure was independent of bat colony size, consistent with an absence of population density thresholds for viral invasion and extinction. Culling campaigns implemented during our study failed to reduce seroprevalence and were perhaps counterproductive for disease control owing to the targeted removal of adults, but potentially greater importance of juvenile and sub-adult bats for transmission. These findings provide new insights into the mechanisms of RV maintenance in vampire bats and highlight the need for ecologically informed approaches to rabies prevention in Latin America.  相似文献   

2.
Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R(0) = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern.  相似文献   

3.
Many emerging and reemerging viruses, such as rabies, SARS, Marburg, and Ebola have bat populations as disease reservoirs. Understanding the spillover from bats to humans and other animals, and the associated health risks requires an analysis of the disease dynamics in bat populations. Traditional compartmental epizootic models, which are relatively easy to implement and analyze, usually impose unrealistic aggregation assumptions about disease-related structure and depend on parameters that frequently are not measurable in field conditions. We propose a novel combination of computational and adaptive modeling approaches that address the maintenance of emerging diseases in bat colonies through individual (intra-host) models of the response of the host to a viral challenge. The dynamics of the individual models are used to define survival, susceptibility and transmission conditions relevant to epizootics as well as to develop and parametrize models of the disease evolution into uniform and diverse populations. Applications of the proposed approach to modeling the effects of immunological heterogeneity on the dynamics of bat rabies are presented.  相似文献   

4.
Adult female and juvenile Mexican free-tailed bats (Tadarida brasiliensis mexicana) were collected bimonthly at Lava Cave, New Mexico from May through September. The purpose of this study was to examine the prevalence of active rabies infection as well as to determine individual immune status in these hosts. All bats were bled and examined for rabies antibody (total antibody versus IgM) utilizing a modified serum neutralization test. The brains were removed and examined by the fluorescent rabies antibody (FRA) test. No significant difference was observed in the number of adults with rabies neutralizing antibody (total) over the study period. Significant differences in rabies neutralizing antibody (total) were observed among the juveniles sampled during July and August. The number of adults with IgM specific antibody was low (15 of 750, 2%) and did not fluctuate significantly. However, the number of juveniles with IgM antibody did show increased levels in August and September. The number of adults positive by the FRA was low (4 of 750, less than 1%) and did not appear to fluctuate significantly over the study period. The number of juveniles positive by the FRA was three and one-half times higher than observed for the adults (14 of 600, 2%). These results indicate that the Mexican free-tailed bat appears to be exposed to rabies virus shortly after birth as evident by its immune status. The low prevalence (4 of 750, less than 1%) of active infection as determined by the FRA and mouse inoculation and the high prevalence (514 of 750, 69%) of IgG antibody in the adult females indicate that the Mexican free-tailed bat recovers from rabies virus infection.  相似文献   

5.
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.  相似文献   

6.
Rabies-related viruses   总被引:2,自引:0,他引:2  
Five viruses related to rabies occur in Africa. Two of these, Obodhiang from Sudan and kotonkan from Nigeria, were found in insects and are only distantly related to rabies virus. The other three are antigenically more closely related to rabies. Mokola virus was isolated from shrews in Nigeria, Lagos bat virus from fruit bats in Nigeria, and Duvenhage virus from brain of a man bitten by a bat in South Africa. The public health significance of the rabies-related viruses was emphasized in Zimbabwe where in 1981 a rabies-related virus became epizootic in the dog and cat population. It is postulated that the ancestral origin of rabies virus was Africa where the greatest antigenic diversity occurs and that the ancestor may have been an insect virus. Questions are raised why rabies has not evolved more rapidly in the New World, given the frequency and ease with which antigenic changes can be induced in the laboratory, and how the virus became so extensively established in New World bats.  相似文献   

7.
This paper considers the transmission of rabies to domestic livestock by vampire bats. Vampire bats act as ectoparasites on cattle both by ingesting a small amount of blood every night and by prolonging bleeding by the action of anticoagulant substances in their saliva. In addition to this parasitic action bats may also transmit rabies, inflicting important losses on affected herds by the inevitable mortality due to the infection. We modeled this complex interaction and we also demonstrate that bat control measures are more effective in reducing rabies prevalence and mortality by rabies than cattle vaccination.  相似文献   

8.
Data on rabies virus infection in bats that were submitted to the Alabama Department of Public Health from 1995-2005 were analyzed. Demographic factors, such as species and sex, and temporal aspects, such as yearly and monthly trends, were investigated. Thirteen species of bats were submitted, and of those, individuals from seven species were rabid; prevalence was highest in Lasiurus borealis and Pipistrellus subflavus and lowest in Eptesicus fuscus and Nycticeius humeralis. There was no difference in prevalence of rabies between sexes or years. Statistically, more rabid bats were submitted in August, September, and November; and fewer were submitted in March, June, and July. Results were similar to those from other regions of North America; these data from Alabama can help to present a more complete view of rabies in bats in North America.  相似文献   

9.
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.  相似文献   

10.
Fetuses were collected from four Mexican free-tailed bats (Tadarida brasiliensis mexicana) and a fetal bat cell (FBC) line was established and tested for its ability to support the replication of the ERA vaccine strain of rabies virus. Cytopathic effects were detected in ERA virus-inoculated as well as uninoculated FBC's. Immunofluorescent antibody testing of uninoculated FBC's provided no evidence for the presence of rabies virus. However, mice inoculated intracranially with supernatant fluid from uninoculated FBC's died. Enzyme-linked immunosorbent assay and immunofluorescent antibody testing revealed rabies virus in the brains of these mice. Tests with a panel of monoclonal antibodies indicated that the isolate was the same as that isolated from Mexican free-tailed bats from the southwestern United States. We conclude that the fetuses from which the FBC line was derived had been infected in utero with rabies virus. We believe this may represent the first observation of prenatal transfer of rabies virus in naturally infected bats.  相似文献   

11.
Rabies in insectivorous bats of western Canada, 1979 to 1983   总被引:2,自引:0,他引:2  
A total of 1,745, 362, and 536 bats collected in Alberta, British Columbia, and Saskatchewan, respectively, was tested for rabies virus between 1979 and 1983. Only one (0.1%) of 769 bats collected at random from buildings was infected with rabies virus in contrast to 95 (5%) of 1,874 symptomatic, rabies-suspect bats submitted for testing. The pattern of infection in the rabies-suspect bats was similar in Alberta and Saskatchewan, but differed in British Columbia. Rabies was diagnosed in four species of bats in each of Alberta and Saskatchewan, but in seven species in British Columbia. Annual prevalence in rabies-suspect bats was similar in colonial species within each province. Rabies was found rarely in suspect little brown bats (Myotis lucifugus) (less than 1%). In suspect big brown bats (Eptesicus fuscus), the prevalence was low in Saskatchewan (3%), moderate in Alberta (10%), and high in British Columbia (25%). Big brown bats accounted for over 55% of the rabid bats detected in each province. Annual prevalence reported in silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was variable in all three provinces. Rabies is enzootic in northern insectivorous bats.  相似文献   

12.
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs’ roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.  相似文献   

13.
Rabies virus (RABV) maintenance in bats is not well understood. Big brown bats (Eptesicus fuscus), little brown bats (Myotis lucifugus), and Mexican free-tailed bats (Tadarida brasiliensis) are the most common bats species in the United States. These colonial bat species also have the most frequent contact with humans and domestic animals. However, the silver-haired bat (Lasionycteris noctivagans) RABV is associated with the majority of human rabies virus infections in the United States and Canada. This is of interest because silver-haired bats are more solitary bats with infrequent human interaction. Our goal was to determine the likelihood of a colonial bat species becoming infected with and transmitting a heterologous RABV. To ascertain the potential of heterologous RABV infection in colonial bat species, little brown bats were inoculated with a homologous RABV or one of two heterologous RABVs. Additionally, to determine if the route of exposure influenced the disease process, bats were inoculated either intramuscularly (i.m.) or subcutaneously (s.c.) with a homologous or heterologous RABV. Our results demonstrate that intramuscular inoculation results in a more rapid progression of disease onset, whereas the incubation time in bats inoculated s.c. is significantly longer. Additionally, cross protection was not consistently achieved in bats previously inoculated with a heterologous RABV following a challenge with a homologous RABV 6 months later. Finally, bats that developed rabies following s.c. inoculation were significantly more likely to shed virus in their saliva and demonstrated increased viral dissemination. In summary, bats inoculated via the s.c. route are more likely to shed virus, thus increasing the likelihood of transmission.  相似文献   

14.
The migratory tree-roosting hoary bat (Lasiurus cinereus) and silver-haired bat (Lasionycteris noctivagans) are among the bat species with the highest reported prevalence of rabies in North America. However, bats submitted for rabies testing typically have been those that have come in contact with humans or pets. Given the roosting ecology of L. cinereus and L. noctivagans, contact with healthy individuals of these species is expected to be rare, with a bias in contact and submission of infected individuals and thus an overestimation of rabies prevalence. We tested 121 L. cinereus and 96 L. noctivagans specimens, collected during mortality surveys at wind energy facilities in Southern Alberta, Canada in 2007 and 2008, for rabies. None of the L. cinereus (0%) and one L. noctivagans (1%) tested positive for rabies. Prevalence of rabies was significantly lower than previously reported estimates, passive and active, for L. cinereus and L. noctivagans. In a review of the literature including multiple bat species, we found a significant difference in estimates of rabies prevalence based on passive versus active surveillance testing. Furthermore, roosting ecology influenced estimates of rabies prevalence, with significantly higher prevalence among passive surveillance submissions of nonsynanthropic species compared to synanthropic species, a trend not evident in active surveillance reports. We conclude that rabies prevalence in randomly collected L. cinereus and L. noctivagans is low and comparable to active surveillance estimates from other species (≤ 1%), and that roosting ecology influences estimates of rabies prevalence among bats submitted to public health laboratories in North America.  相似文献   

15.
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.  相似文献   

16.
In most host-parasite systems, variation in parasite burden among hosts drives transmission dynamics. Heavily infected individuals introduce disproportionate numbers of infective stages into host populations or surrounding environments, causing sharp increases in frequency of infection. Parasite aggregation within host populations may result from variation among hosts in exposure to infective propagules and probability of subsequent establishment of parasites in the host. This is because individual host heterogeneities contribute to a pattern of parasite overdispersion that emerges at the population level. We quantified relative roles of host exposure and parasite establishment in producing variation in parasite burdens, to predict which hosts are more likely to bear heavy burdens, using big brown bats (Eptesicus fuscus) and their helminths as a model system. We captured bats from seven colonies in Michigan and Indiana, USA, assessed their helminth burdens, and collected data on intrinsic and extrinsic variables related to exposure, establishment, or both. Digenetic trematodes had the highest prevalence and mean abundance while cestodes and nematodes had much lower prevalence and mean abundance. Structural equation modeling revealed that best-fitting models to explain variations in parasite burden included genetic heterozygosity and immunocompetence as well as distance to the nearest water source and the year of host capture. Thus, both differential host exposure and differential parasite establishment significantly influence heterogeneous helminth burdens, thus driving population-level patterns of parasite aggregation.  相似文献   

17.
Following brain infection, the Challenge Virus Standard strain of rabies virus infects the retina. Rabies virus ocular infection induces the infiltration of neutrophils and predominantly T cells into the eye. The role of tumor necrosis factor alpha (TNF-alpha)-lymphotoxin signaling in the control of rabies virus ocular infection and inflammatory cell infiltration was assessed using mice lacking the p55 TNF-alpha receptor (p55TNFR(-/-) mice). The incidence of ocular disease and the intensity of retinal infection were greater in p55TNFR(-/-) mice than in C57BL/6 mice: the aggravation correlated with less neutrophil and T-cell infiltration. This indicates that cellular infiltration is under the control of the p55 TNF-alpha receptor and suggests that inflammatory cells may protect the eye against rabies virus ocular infection. The role of T cells following rabies virus ocular disease was assessed by comparison of rabies virus infection in nude mice with their normal counterparts. Indeed, the incidence and severity of the rabies virus ocular disease were higher in athymic nude mice than in BALB/c mice, indicating that T lymphocytes are protective during rabies virus ocular infection. Moreover, few T cells and neutrophils underwent apoptosis in rabies virus-infected retina. Altogether, these data suggest that T lymphocytes and neutrophils are able to enter the eye, escape the immune privilege status, and limit rabies virus ocular disease. In conclusion, rabies virus-mediated eye disease provides a new model for studying mechanisms regulating immune privilege during viral infection.  相似文献   

18.

Background

Rabies is a fatal viral encephalitic disease that is caused by lyssaviruses which can affect all mammals, including human and bats. In Europe, bat rabies cases are attributed to five different lyssavirus species, the majority of rabid bats being attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). In France, rabies in bats is under surveillance since 1989, with 77 positive cases reported between 1989 and 2016.

Case presentation

In the frame of the bat rabies surveillance, an unusual mortality of serotine bats was reported in 2009 in a village in North-East France. Six juvenile bats from an E. serotinus maternity colony counting ~200 individuals were found to be infected with EBLV-1. The active surveillance of the colony by capture sessions of bats from July to September 2009 showed a high detection rate of neutralising EBLV-1 antibodies (≈ 50%) in the colony. Moreover, one out of 111 animals tested was found to shed viable virus in saliva, while lyssavirus RNA was detected by RT-PCR for five individuals.

Conclusion

This study demonstrated that the lyssavirus infection in the serotine maternity colony was followed by a high rate of bat rabies immunity after circulation of the virus in the colony. The ratio of seropositive bats is probably indicative of an efficient virus transmission coupled to a rapid circulation of EBLV-1 in the colony.
  相似文献   

19.
Using detailed field study observations of the side-striped jackal (Canis adustus) and a simple stochastic model of the transmission dynamics of the virus and host demography, we discuss the epidemiology of rabies virus infection in the jackal population of Zimbabwe. Of the two jackal species in Zimbabwe, the other being the black-backed jackal (Canis mesomelas), the bulk of notified rabies cases are in side-striped jackals. Specifically, we show that the side-striped jackal population itself does not seem able to support rabies infection endemically, i.e. without frequent reintroduction from outside sources of infection. We argue that this is probably because the overall average jackal population density is too low to maintain the chain of infection. This study suggests that the disease is regularly introduced to jackals by rabid dogs from populations associated with human settlements. Given the rapidly rising dog population in Zimbabwe, estimates are derived of the future incidence of jackal rabies based on different dog-vaccination scenarios.  相似文献   

20.
A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号