首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A simple and complete derivation of the relation between concentration-based preferential interaction coefficients and integrals over the relevant pair correlation functions is presented for the first time. Certain omissions from the original treatment of pair correlation functions in multicomponent thermodynamics are also addressed. Connections between these concentration-based quantities and the more common molality-based preferential interaction coefficients are also derived. The pair correlation functions and preferential interaction coefficients of both solvent (water) and cosolvent (osmolyte) in the neighborhood of a macromolecule contain contributions from short-range repulsions and generic long-range attractions originating from the macromolecule, as well as from osmolyte-solvent exchange reactions beyond the macromolecular surface. These contributions are evaluated via a heuristic analysis that leads to simple insightful expressions for the preferential interaction coefficients in terms of the volumes excluded to the centers of the water and osmolyte molecules and a sum over the contributions of exchanging sites in the surrounding solution. The preferential interaction coefficients are predicted to exhibit the experimentally observed dependence on osmolyte concentration. Molality-based preferential interaction coefficients that were reported for seven different osmolytes interacting with bovine serum albumin are analyzed using the this formulation together with geometrical parameters reckoned from the crystal structure of human serum albumin. In all cases, the excluded volume contribution, which is the volume excluded to osmolyte centers minus that excluded to water centers in units of V1, exceeds in magnitude the contribution of the exchange reactions. Under the assumption that the exchange contribution is dominated by sites in the first surface-contiguous layer, the ratio of the average exchange constant to its neutral random value is determined for each osmolyte. These ratios all lie in the range 1.0 +/- 0.15, which indicates rather slight deviations from random occupation near the macromolecular surface. Finally, a mechanism is proposed whereby the chemical identity of an osmolyte might be concealed from partially ordered multilayers of water in clefts, grooves, and pits, and its consequences are noted.  相似文献   

3.
4.
Protein-water interactions have long been recognized as a major determinant of chain folding, conformational stability, binding specificity and catalysis. However, the detailed effects of water on stabilizing protein-protein interactions remain elusive. A way to test experimentally the contribution of water-mediated interactions is by applying double mutant cycle analysis on pairs of residues that do not form direct interactions, but are bridged by water. Seven such interactions within the interface between TEM1 and BLIP proteins were evaluated. No significant interaction free energy was found between either of them. Water can bridge interactions, but also stabilize the structure of the monomer. To distinguish between these, we performed a bioinformatic analysis using AQUAPROT (http://bioinfo.weizmann.ac.il/aquaprot) to determine the degree of water conservation between the bound and unbound states. 29 structures of twelve complexes and 20 related monomers were analyzed. Of the 262 water molecules located within the interfaces, 145 were conserved between the unbound and bound structures. Strikingly, all 50 buried or partially buried waters in the monomer structures were conserved at the same location in the bound structures. Thus, buried waters have an important role in stabilizing the monomer fold rather than contributing to protein-protein binding, and are not replaced by residues from the incoming protein. Taking together the experimental and bioinformatics evidence suggests that exposed waters within the interface may be good sites for protein engineering, while buried or mostly buried waters should be left unchanged.  相似文献   

5.
Quantitative characterization of protein interactions under physiological conditions is vital for systems biology. Fluorescence photobleaching/activation experiments of GFP-tagged proteins are frequently used for this purpose, but robust analysis methods to extract physicochemical parameters from such data are lacking. Here, we implemented a reaction-diffusion model to determine the contributions of protein interaction and diffusion on fluorescence redistribution. The model was validated and applied to five chromatin-interacting proteins probed by photoactivation in living cells. We found that very transient interactions are common for chromatin proteins. Their observed mobility was limited by the amount of free protein available for diffusion but not by the short residence time of the bound proteins. Individual proteins thus locally scan chromatin for binding sites, rather than diffusing globally before rebinding at random nuclear positions. By taking the real cellular geometry and the inhomogeneous distribution of binding sites into account, our model provides a general framework to analyze the mobility of fluorescently tagged factors. Furthermore, it defines the experimental limitations of fluorescence perturbation experiments and highlights the need for complementary methods to measure transient biochemical interactions in living cells.  相似文献   

6.
R A Friedman  B Honig 《Biopolymers》1992,32(2):145-159
Base-stacking and phosphate-phosphate interactions in B-DNA are studied using the finite difference Poisson-Boltzmann equation. Interaction energies and dielectric constants are calculated and compared to the predictions of simple dielectric models. No extant simple dielectric model adequately describes phosphate-phosphate interactions. Electrostatic effects contribute negligibly to the sequence and conformational dependence of base-stacking interactions. Electrostatic base-stacking interactions can be adequately modeled using the Hingerty screening function. The repulsive and dispersive Lennard-Jones interactions dominate the dependence of the stacking interactions on roll, tilt, twist, and propellor. The Lennard-Jones stacking energy in ideal B-DNA is found to be essentially independent of sequence.  相似文献   

7.
Aspergillus niger produces multiple forms of polygalacturonases with molecular masses ranging from 30 to 60 kDa. The high molecular weight polygalacturonase (61 ± 2 kDa) from A. niger possesses a pH optimum of 4.3 and a pI of 3.9. The enzyme exhibited high sensitivity, both in terms of activity and structure, in the pH range of 4.3–7.0. The enzyme was irreversibly inactivated at pH 7.0. The enzyme is predominantly rich in parallel β structure. There is unfolding of the enzyme molecule between 4.3 and 7.0 resulting in irreversible loss of secondary and tertiary structure with the exposure of hydrophobic surfaces. ANS binding measurements, intrinsic fluorescence and acrylamide quenching measurements have confirmed the unfolding and exposure of hydrophobic surfaces. The midpoint of pH transition for both activity and secondary structure is 6.2 ± 0.1. The pH-induced changes of polygalacturonase confirm the role of histidine residues in structure and activity of the enzyme. The irreversible nature of inactivation is due to the unfolding induced exposure of hydrophobic surfaces leading to association/aggregation of the molecule. Size exclusion chromatography measurements have established the association of enzyme at higher pH. Urea induced unfolding measurements at pH 4.3 and 7.0 have confirmed the loss in stability as we approach neutral pH.  相似文献   

8.
The intrinsic solvent contribution to the free energy of protein-ligand interactions in solution is shown to be related to a free energy per unit area term, obtained from analysis of the solution to gas phase process, and the change in accessible area on association. Analysis of the free energy data on a per unit area basis for the solution to gas phase process leads to the conclusion that the aliphatic CH2 group is only slightly intrinsically hydrophobic, δΔG°/A?2 = 6 cal mol?1A?2, whereas the aromatic compound are actually intrinsically hydrophilic, δΔG°/A?2 = -26 cal mol?1A?2. This leads to the conclusion that, for the interaction of benzene, naphthalene and anthracene with the binding site of α-chymotrypsin, the ligand-solvent free energy contribution is actually unfavorable. Since the protein-solvent contribution is small or unfavorable, the central conclusion is that the solvent contribution to protein-ligand interactions is small or unfavorable and that it is the protein-ligand non-bonded interactions that provide the driving force for association.  相似文献   

9.
The three-dimensional structure of para-fluoro-D-phenylalanine (PFF) in its complex with the zinc protease carboxypeptidase A (CPA) has been determined at 2.0 A resolution by X-ray crystallographic methods. The structure reveals that the para-fluorobenzyl side chain of the inhibitor is buried in the S'1 hydrophobic pocket of the enzyme. Intriguingly, this ligand molecule inhibits CPA better than its amino acid analogues D-phenylalanine (D-Phe) and D-tyrosine (D-Tyr) by factors of 4 and 5, respectively. Moreover, the para-fluoro derivative is a better inhibitor than para-chloro- or para-bromo-D-phenylalanine by nearly a factor of 50. This result is consistent with binding enhancements realized in other protein complexes involving halogenated ligand molecules, regardless of whether the carbon-halogen group of the ligand makes specific polar interactions or non-specific hydrophobic interactions with its protein host. In the CPA-PFF complex, the fluorine atom of PFF does not make any direct polar contact with the enzyme, and the contact surface area of the protein-ligand interface is only slightly greater, although more hydrophobic, than that of D-Phe and D-Tyr. Therefore, we conclude that the slight binding enhancement measured for PFF relative to D-Phe and D-Tyr arises predominantly from increasing the hydrophobic character of the protein-ligand interface, and not solely from increasing the degree of protein-ligand contact.  相似文献   

10.
11.
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.  相似文献   

12.
13.
Wang GZ  Liu J  Wang W  Zhang HY  Lercher MJ 《PloS one》2011,6(3):e17650

Background

Many single-gene knockouts result in increased phenotypic (e.g., morphological) variability among the mutant''s offspring. This has been interpreted as an intrinsic ability of genes to buffer genetic and environmental variation. A phenotypic capacitor is a gene that appears to mask phenotypic variation: when knocked out, the offspring shows more variability than the wild type. Theory predicts that this phenotypic potential should be correlated with a gene''s knockout fitness and its number of negative genetic interactions. Based on experimentally measured phenotypic capacity, it was suggested that knockout fitness was unimportant, but that phenotypic capacitors tend to be hubs in genetic and physical interaction networks.

Methodology/Principal Findings

We re-analyse the available experimental data in a combined model, which includes knockout fitness and network parameters as well as expression level and protein length as predictors of phenotypic potential. Contrary to previous conclusions, we find that the strongest predictor is in fact haploid knockout fitness (responsible for 9% of the variation in phenotypic potential), with an additional contribution from the genetic interaction network (5%); once these two factors are taken into account, protein-protein interactions do not make any additional contribution to the variation in phenotypic potential.

Conclusions/Significance

We conclude that phenotypic potential is not a mysterious “emergent” property of cellular networks. Instead, it is very simply determined by the overall fitness reduction of the organism (which in its compromised state can no longer compensate for multiple factors that contribute to phenotypic variation), and by the number (and presumably nature) of genetic interactions of the knocked-out gene. In this light, Hsp90, the prototypical phenotypic capacitor, may not be representative: typical phenotypic capacitors are not direct “buffers” of variation, but are simply genes encoding central cellular functions.  相似文献   

14.
Over the past two decades the potential for the exchange of bacterial genes in natural environments through transduction (bacteriophage-mediated gene transfer) has been well established. Studies carried out by various laboratories throughout the world have demonstrated that both chromosomal and plasmid DNA can be successfully transduced in natural environments ranging from sewer plants to rivers and lakes. Transduction has been shown to take place in the gills of oysters and the kidneys of mice. Model studies have demonstrated the ability of transduction to maintain genetic material in bacterial gene pools that would otherwise be lost because of negative fitness. Thus, transduction may affect the course of bacterial evolution. Identification of natural transduction has led to the investigation of the dynamics of bacteriophage host interactions in natural aquatic environments and to the exploration of various environmental factors that affect virus-host interactions. Two important environmental factors which affect virus-host interactions are the metabolic state of the host and the exposure of the host to DNA-damaging stresses such as solar UV light. Recent researches on these two areas of virus-host relationships are reviewed.  相似文献   

15.
Electrostatic interactions have a central role in some biological processes, such as recognition of charged ligands by proteins. We characterized the binding energetics of yeast triosephosphate isomerase (TIM) with phosphorylated inhibitors 2-phosphoglycollate (2PG) and phosphoglycolohydroxamate (PGH). We determined the thermodynamic parameters of the binding process (Kb, ΔGb, ΔHb, ΔSb and ΔCp) with different concentrations of NaCl, using fluorimetric and calorimetric titrations in the conventional mode of ITC and a novel method, multithermal titration calorimetry (MTC), which enabled us to measure ΔCp in a single experiment. We ruled out specific interactions of Na+ and Cl- with the native enzyme and did not detect significant linked protonation effects upon the binding of inhibitors. Increasing ionic strength (I) caused Kb, ΔGb and ΔHb to become less favorable, while ΔSb became less unfavorable. From the variation of Kb with I, we determined the electrostatic contribution of TIM−2PG and TIM−PGH to ΔGb at I = 0.06 M and 25 °C to be 36% and 26%, respectively. The greater affinity of PGH for TIM is due to a more favorable ΔHb compared to 2PG (by 19-24 kJ mol-1 at 25 °C). This difference is compatible with PGH establishing up to five more hydrogen bonds with TIM. Both binding ΔCps were negative, and less negative with increasing ionic strength. ΔCps at I = 0.06 M were much more negative than predicted by surface area models. Water molecules trapped in the interface when ligands bind to protein could explain the highly negative ΔCps. Thermodynamic binding functions for TIM−2PG changed more with ionic strength than those for TIM−PGH. This greater dependence is consistent with linked, but compensated, protonation equilibriums yielding the dianionic species of 2PG that binds to TIM, process that is not required for PGH.  相似文献   

16.
To explain the inhibitory action of polyelectrolytes on enzymes and, in particular, to define potentially reactive zones for the binding of polyelectrolyte, the electric potential of enzymes lactate dehydrogenase and glutamate dehydrogenase was calculated using the solution of the Poisson-Boltzmann equation by a numerical method with the use of the Gauss-Seidel relaxation method at three pH values: 6.5, 7.0, and 8.0 and three values of ionic strength: 50, 100, and 150 mm. On the basis of these calculations and their visualization, representative sites for favorable binding of polyanions were determined as extended areas on the surface of proteins with the positive potential in the neutral pH region. It was shown that there is a correlation between the area of positive potential and the efficiency of enzyme inactivation for a number of pH values and concentrations of salt for two enzymes. The calculations performed allowed one to explain the inhibitory action of polyelectrolytes on the specified enzymes to understand the difference between the values of polyelectrolyte inactivation constants for the two enzymes and estimate the minimal areas of the positive potential on the protein surface that provide their effective inhibition.  相似文献   

17.
Dostál L  Misselwitz R  Welfle H 《Biochemistry》2005,44(23):8387-8396
Solution properties of Arc repressors (wild-type and F10H variant) from Salmonella bacteriophage P22 and their complexes with operator DNA (Arc-wt-DNA and Arc-F10H-DNA) were characterized by circular dichroism, fluorescence, and Raman difference spectroscopy and compared with the crystal structures of free and DNA-bound Arc repressors (wild-type and F10V variant). From the crystal structure of Arc-wt-operator DNA complex, it is known that amino acids Phe10/10' flip out of the hydrophobic protein core, and in the Arc-F10V-DNA complex, the methyl groups of Val10/10' rotate toward the DNA. Arc-wt and Arc-F10H significantly perturb the Raman signatures of the operator DNA upon complex formation. The two proteins induce similar changes in the DNA spectra. Raman markers in the difference spectra (spectrum of the complex minus spectra of DNA and Arc) indicate binding of Arc in the major groove, several direct contacts, e.g., hydrogen bonds of protein residues with bases, and slight perturbations of the deoxyribose ring systems that are consistent with bending of the operator DNA. Trp14, the only one tryptophan of Arc repressor monomers, serves as a very sensitive tool for changes of the hydrophobic core of the protein. The Raman spectra identify in the free Arc-F10H variant a largely different chi(2,1) rotation angle of Trp14 compared to that in wild-type Arc. In the Arc-wt-DNA and Arc-F10H-DNA complexes, however, the Trp14 chi(2,1) rotation angles are similar in both proteins. Furthermore, in both complexes, a strengthening of the van der Waals interactions of the aromatic ring of Trp14 is indicated compared to these interactions in the free proteins. According to the fluorescence and Raman data, His10 is buried in the hydrophobic core of free Arc-F10H, resembling the "core" conformation of Phe10 in Arc-wt, but His10 is looped out in the complex with DNA resembling the "bound" conformation of Phe10 in the Arc-wt-operator DNA complex.  相似文献   

18.
19.
Evo‐devo is featuring prominently in current discussion to extend evolutionary theory. Developmental palaeontology, the study of life history evolution and ontogeny in fossils, remains an area of investigation that could benefit from, but also illuminate, the discourse and research agenda of evo‐devo. Understanding how and why evolution proceeds in phenotypic space is an important goal of evo‐devo and one that can be significantly enriched through the examination of development in the fossil record (Palaeo‐evo‐devo). Such an approach permits developmental pathways to be extended into the past, constraining hypotheses of developmental evolution in ways that cannot be predicted by patterns observed from extant taxa alone. The comparison of developmental dynamics among extant and extinct taxa yields a more complete understanding of the temporal persistence of factors that shape evolution in phenotypic space. As more data are compiled that document ‘fossilized ontogenies’, a stage will emerge from which insights into the evolution of development can begin to appraise those phenotypes that are inaccessible to evo‐devo.  相似文献   

20.
The loop of four thymines in the sodium form of the dimeric folded quadruplex [d(G3T4G3)]2 assumes a well-defined structure in which hydrogen bonding between the thymine bases appears to contribute to the stability and final conformation of the quadruplex. We have investigated the importance of the loop interactions by systematically replacing each thymine in the loop with a cytosine. The quadruplexes formed by d(G3CT3G3), d(G3TCT2G3), d(G3T2CTG3) and d(G3T3CG3) in the presence of 150 mM Na+ were studied by gel mobility, circular dichroism and 1H NMR spectroscopy. The major species formed by d(G3CT3G3), d(G3TCT2G3) and d(G3T3CG3) at 1 mM strand concentration at neutral pH is a dimeric folded quadruplex. d(G3T2CTG3) has anomalous behaviour and associates into a greater percentage of linear four-stranded quadruplex than the other three oligonucleotides at neutral pH and at the same concentration. The linear four-stranded quadruplex has a greater tendency to oligomerize to larger ill-defined structures, as demonstrated by broad 1H NMR resonances. At pH 4, when the cytosine is protonated, there is a greater tendency for each of the oligonucleotides to form some four-stranded linear quadruplex, except for d(G3T2CTG3), which has the reverse tendency. The experimental results are discussed in terms of hydrogen bonding within the thymine loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号