共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance Raman (RR) and absorption spectroscopic studies of purified rabbit liver cytochromes P-450 show that the form 2 isomer (LM2) but not the form 4 isomer (LM4) forms a long-lived complex with halothane after dithionite reduction, absorbing light at 470 nm, in which ferric 6-coordinated heme iron in the low-spin configuration is liganded to 2-chloro-1,1-difluoroethylene. The RR data exclude the possibility that the CF3CHCl- carbanion is a ligand and are consistent with the involvement of an active-site pocket in the cytochrome P-450 polypeptide. 相似文献
2.
The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling 总被引:3,自引:0,他引:3
Cytochrome P-450cam cationic surface charges at Lys 344, Arg 72, and Lys 392 have been altered by site-directed mutagenesis techniques. The residues at Lys 344 and Arg 72 were previously suggested as salt bridge contacts in the cytochrome b5-cytochrome P-450cam association complex and implicated in the physiological putidaredoxin-cytochrome P-450cam complex [Stayton, P. S., Poulos, T. L., & Sligar, S. G. (1989) Biochemistry 28, 8201-8205]. Mutations to neutralize the basic charge at Arg 72 (R72Q) and to both neutralize and reverse the charge at Lys 344 (K344Q, K344E) resulted in alteration of NADH oxidation rates in the reconstituted physiological electron-transfer system, which is rate limited by putidaredoxin-cytochrome P-450cam electron transfer. The steady-state Vmax values were apparently unperturbed, suggesting that the observed rate differences were largely attributable to Km effects. The Km values observed for the K344Q (24 microM) and K344E (32 microM) mutants are in the direction expected for neutralization and reversal of a salt bridge charge interaction. A control mutation at a basic surface charge located away from the proposed site of interaction, Lys 392 (K392Q), resulted in overall activities quantitated by NADH oxidation rates that are similar to that of wild-type cytochrome P-450cam. Calculation of the cytochrome P-450cam electrostatic field revealed a patch of positive potential at the modeled cytochrome b5 interaction site lying directly above the nearest proximal approach to the buried heme prosthetic group. These results provide experimental and theoretical evidence for the modeled cytochrome P-450cam binding site implicated in both cytochrome b5 and putidaredoxin association.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
O Bangcharoenpaurpong A K Rizos P M Champion D Jollie S G Sligar 《The Journal of biological chemistry》1986,261(18):8089-8092
We have used resonance Raman spectroscopy and isotopic labeling techniques to unambiguously assign the dioxygen stretching frequency (vo-o) in the substrate-bound oxygenated complex of cytochrome P-450cam. The frequency found for Vo-o in the P-450cam system (1140 cm-1) is in remarkable agreement with recent studies of thiolate heme model compounds. The general features of the oxy-P-450cam Raman spectra are tabulated and comparisons are made with the oxy complexes of hemoglobin, myoglobin, and various model compounds. Most of the results are qualitatively explained by consideration of electron donation into the pi g (O2)/d pi (M) orbitals of the oxygenated complex (M = Fe or Co). It is also noted that the effect of the "extra" electron in the nitrogen base Co(II) oxy complexes, in some ways, parallels the effect of the lone pair electrons of thiolate in the oxy-P-450cam complex. This is evidenced by the enhanced resonance Raman activity of vo-o in both the Co(II) and P-450 systems as well as by the similarity of the vo-o frequencies. 相似文献
4.
Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis 总被引:2,自引:0,他引:2
S Graham-Lorence M W Khalil M C Lorence C R Mendelson E R Simpson 《The Journal of biological chemistry》1991,266(18):11939-11946
The conversion of androgens to estrogens is catalyzed by an enzyme complex named aromatase, which consists of a form of cytochrome P-450, aromatase cytochrome P-450 (cytochrome P-450AROM), and the flavoprotein, NADPH-cytochrome P-450 reductase. As a first step toward investigation of the structure-function relationships of cytochrome P-450AROM, we have used computer modeling to align the amino acid sequence of cytochrome P-450AROM with that of cytochrome P-450CAM from Pseudomonas putida and thus create a substrate pocket using the heme-binding region and the I-helix of cytochrome P-450CAM as the template. Site-directed mutagenesis was then carried out at two sites: one at a region that aligns with the bend in the I-helix of cytochrome P-450CAM and the other at a glutamate (Glu302) just N-terminal of this bend, which is predicted to be in close proximity to the C2-position of the androstenedione substrate. To determine the importance of the former region, three mutants were constructed: A307G (Ala307----Gly), P308V (Pro308----Val), and GAGV, which changed -Ile305-Ala306-Ala307-Pro308- to -Gly-Ala-Gly-Val- (the corresponding sequence found in 17 alpha-hydroxylase cytochrome P-450). When these proteins were expressed in COS-1 cells, it was found that the activity of P308V was approximately one-third that of the wild type. These observations are consistent with the concept that Pro308 causes a bend in the I-helix of cytochrome P-450AROM, similar to that observed in cytochrome P-450CAM, which is believed to be important in forming the substrate-binding pocket. The next set of mutants were designed to determine the importance of Glu302 in catalysis. Four mutants were prepared in which Glu302 was changed either to Ala, Val, Gln, or Asp, and the activities of the expressed proteins were examined. It was found that mutations in which the carboxylic acid was replaced were essentially devoid of activity. On the other hand, changing Glu302 to Asp resulted in a two-thirds reduction in the apparent Vmax. These results support the role of a carboxylic acid residue at position 302 in the catalytic activity of cytochrome P-450AROM. 相似文献
5.
The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis 总被引:5,自引:0,他引:5
The role of the active site hydrogen bond of cytochrome P-450cam has been studied utilizing a combination of site-directed mutagenesis and substrate analogues with altered hydrogen bonding capabilities. Cytochrome P-450cam normally catalyzes the regiospecific hydroxylation of the monoterpene camphor. The x-ray crystal structure of this soluble bacterial cytochrome P-450 (Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J. (1985) J. Biol. Chem. 260, 16122-16128) indicates a specific hydrogen bond between tyrosine 96 and the carbonyl moiety of the camphor substrate. The site-directed mutant in which tyrosine 96 has been changed to a phenylalanine and the substrate analogues thiocamphor and camphane have been used to probe this interaction in several aspects of catalysis. At room temperature, both the mutant enzyme with camphor and the wild type enzyme with thiocamphor bound result in 59 and 65% high-spin ferric enzyme as compared to the 95% high spin population obtained with native enzyme and camphor as substrate. The equilibrium dissociation constant is moderately increased, from 1.6 microM for the wild type protein to 3.0 and 3.3 microM for wild type-thiocamphor and mutant-camphor complexes, respectively. Camphane bound to cytochrome P-450cam exhibits a larger decrease in high spin fraction (45%) and a correspondingly larger KD (46 microM), suggesting that the carbonyl moiety of camphor plays an important steric role in addition to its interaction as a hydrogen bond acceptor. The absolute regioselectivity of the mutant enzyme, and of the wild type enzyme with thiocamphor, is lost resulting in production of several hydroxylated products in addition to the 5-exo-hydroxy isomer. Based on rates of NADH oxidation, comparison of the substrate specificity for these systems (kcat/KD) indicates a 5- and 7-fold decrease in specificity for the mutant enzyme and thiocamphor-wild type complex, respectively. The replacement of the cytochrome P-450cam active site tyrosine with phenylalanine does not affect the branching ratio of monooxygenase versus oxidase chemistry or peroxygenase activity (Atkins, W.M., and Sligar, S.G. (1987) J. Am. Chem. Soc. 109, 3754-3760). 相似文献
6.
P Hildebrandt R Greinert A Stier H Taniguchi 《European journal of biochemistry》1989,186(1-2):291-302
The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes. 相似文献
7.
Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis 总被引:7,自引:0,他引:7
A L Shen T D Porter T E Wilson C B Kasper 《The Journal of biological chemistry》1989,264(13):7584-7589
Comparison of the amino acid sequence of rat liver NADPH-cytochrome P-450 oxidoreductase with that of flavoproteins of known three-dimensional structure suggested that residues Tyr-140 and Tyr-178 are involved in binding of FMN to the protein. To test this hypothesis, NADPH-cytochrome P-450 oxidoreductase was expressed in Escherichia coli using the expression-secretion vector pIN-III-ompA3, and site-directed mutagenesis was employed to selectively alter these residues and demonstrate that they are major determinants of the FMN-binding site. Bacterial expression produced a membrane-bound 80-kDa protein containing 1 mol each of FMN and FAD per mol of enzyme, which reduced cytochrome c at a rate of 51.5 mumol/min/mg of protein and had absorption spectra and kinetic properties very similar to those of the rat liver enzyme. Replacement of Tyr-178 with aspartate abolished FMN binding and cytochrome c reductase activity. Incubation with FMN increased catalytic activity to a maximum of 8.6 mumol/min/mg of protein. Replacement of Tyr-140 with aspartate did not eliminate FMN binding, but reduced cytochrome c reductase activity about 5-fold, suggesting that FMN may be bound in a conformation which does not permit efficient electron transfer. Substitution of phenylalanine at either position 140 or 178 had no effect on FMN content or catalytic activity. The FAD level in the Asp-178 mutant was also decreased, suggesting that FAD binding is dependent upon FMN; FAD incorporation may occur co-translationally and require prior formation of an intact FMN domain. 相似文献
8.
Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human aromatase mutants (E302D, S478A, S478T, H480K, and H480Q) were prepared using a mammalian cell expression system. These mutants were evaluated by enzyme kinetic analysis, inhibitory profile studies, and reaction intermediate measurements. Three steroidal inhibitors [4-hydroxyandrostenedione (4-OHA), 7alpha-(4'-amino)phenylthio-1,4-androstandiene-3,17-dione (7alpha-APTADD), and bridge (2,19-methyleneoxy) androstene-3,17-dione (MDL 101003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)] were used in the inhibitory profile studies. Our computer model of aromatase suggests that Glu302 is situated in the conserved I-helix region and located near the C-19 position of the steroid substrate. The model was supported by significant changes in kinetic parameters and a sevenfold increase in the Ki value of MDL 101,003 for the mutant E302D. As S478A was found to have kinetic properties similar to the wild-type enzyme and a much higher activity than S478T, Ser478 is thought to be situated in a rather restricted environment. There was a 10-fold increase in the Ki value of 7alpha-APTADD for S478T over that for the wild-type enzyme, suggesting that Ser478 might be near the C-7 position of the substrate. The reaction intermediate analysis revealed that significantly more 19-ol intermediate was generated by both S478A and S478T than the wild-type enzyme. These results would support a hypothesis that Ser478 plays a role in the first and second hydroxylation reactions. A positive charged amino acid is preferred at position 480 as shown by the fact that H480K has a significantly higher activity than H480Q. The Ki value of 4-OHA for H480Q was found to be three times that of the wild-type enzyme. In addition, significantly more 19-ol and 19-al intermediates were detected for both mutants H480K and H480Q than for the wild-type enzyme. Evaluation of the two mutations at His480 allows us to propose that this residue may participate in the aromatization reaction (the third step) by acting as a hydrogen bond donor for the C-3 keto group of the substrate. Furthermore, new products were generated when the enzyme was mutated at Ser478 and His480. Thus, these two residues must play an important role in the catalysis and are likely closer to the substrate binding site than previously predicted. 相似文献
9.
Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy 总被引:1,自引:0,他引:1
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Surface enhanced resonance Raman (SERR) spectroscopy has been used to study the vibrational spectra of the heme of purified rabbit liver cytochrome P-450 LM2 which was adsorbed on colloidal silver suspensions or on a silver electrode. Bases on a comparison with the resonance Raman (RR) spectra of the 'solute' species the high sensitivity of the SERR technique is demonstrated. Two different features were chosen in order to determine the structural and functional integrity of the adsorbed P-450. Both, substrate-induced spin state changes on the oxidized P-450 and the effect of the thiolate ligand on the oxidation state marker band v4 in the reduced P-450 could be observed in the SERR spectra of the adsorbed as well as in the RR spectra of the dissolved enzyme. These findings indicate that the protein structure near the substrate binding site and the coordination by thiolate are not affected by the interaction with the metal surface. Both structural elements are crucial for the function of P-450. Thus the elementary processes of the enzymatic action of P-450 can be investigated by this highly sensitive version of RR spectroscopy. 相似文献
11.
12.
Expansion of substrate specificity of cytochrome P450 2A6 by random and site-directed mutagenesis 总被引:1,自引:0,他引:1
The natural product indole is a substrate for cytochrome P450 2A6. Mutagenesis of P450 2A6 was done to expand its capability in the oxidization of bulky substituted indole compounds, which are not substrates for the wild-type enzyme or the double mutant L240C/N297Q, as determined in our previous work (Wu, Z.-L., Aryal, P., Lozach, O., Meijer, L., and Guengerich, F. P. (2005) Chem. Biodivers. 2, 51-65). Error-prone PCR and site-directed mutagenesis led to the identification of two critical amino acid residue changes (N297Q and I300V) that achieve the purpose. The new mutant (N297Q/I300V) was able to oxidize both 4- and 5-benzyloxy(OBzl)indoles to form colored products. Both changes were required for oxidation of these bulky substrates. The colored product derived from 5-OBzl-indole was mainly 5,5'-di-OBzl-indirubin, whereas the dominant blue dye isolated upon incubations with 4-OBzl-indole was neither an indigo nor an indirubin. Two-dimensional NMR experiments led to assignment of the structure as 4-OBzl-2-(4'-OBzl-1',7'-dihydro-7'-oxo-6'H-indol-6'-ylidene)indolin-3-one, in which a pyrrole ring and a benzene ring are connected with a double bond instead of the pyrrole-pyrrole connection of other indigoids. Monomeric oxidation products were also isolated and characterized; three phenols (4-OBzl-1H-indol-5-ol, 4-OBzl-1H-indol-6-ol, and 4-OBzl-1H-indol-7-ol) and one quinone (4-OBzl-1H-indole-6,7-dione, the postulated immediate precursor of the final blue dye) were identified. The results are interpreted in the context of a crystal structure of a P450 2A6-coumarin complex. The I300V change opens an additional pocket to accommodate the OBzl bulk. The N2297Q change is postulated to generate a hydrogen bond between Gln and the substrate oxygen. Thus, the substrate specificity of P450 2A6 was expanded, and new products were obtained in this study. 相似文献
13.
Moises Agosin 《Molecular and cellular biochemistry》1976,12(1):33-44
Summary Two approaches may be used to study the function of cytochrome P-450 in insects: (a) an evaluation of the spectral and catalytic properties of the hemoprotein while associated with microsomal membranes; (b) the solubilization, resolution and purification of the microsomal mixed-function oxidase system. The first approach has provided some understanding of the biochemical factors involved in the metabolism of a variety of compounds, including pesticides, drugs, hormones and many other xenobiotics. However, solubilization of the monooxygenase system allows the study of each of its components individually, providing a better insight on the sequence of events leading to the hydroxylation of a substrate, the type of intermediates formed, and the rate-limiting step(s). This report discusses studies carried out with the monooxygenase system associated with microsomal membranes, as well as procedures to solubilize and partially purify its components from housefly microsomes. The latter involves solubilization with either Triton X-100 or sodium cholate, followed by either ammonium sulfate fractionation, Sephadex G-200, DEAE-Sephadex A-50 column chromatography or by-amino-n-octyl-Sepharose 4B affinity chromatography. These procedures have shown that two cytochrome P-450 species (P-450 and P-450I) are present in microsomes isolated from a resistant housefly strain. Induction with either naphthalene or phenobarbital appears to increase cytochrome P-450I preferentially.An invited article. 相似文献
14.
The way in which structural diversity encodes the capacity of individual P450 enzymes to metabolize multiple, structurally distinct substrates remains largely unknown. The tools of molecular biology provide a means of identifying amino acid residues among closely related P450s that are determinants of their distinct catalytic properties. Work in our laboratory has identified two substrate specificity-determining segments of the amino acid sequences of subfamily 2C P450s. A pattern has emerged from this work, and that of others, which suggests a model for the structural basis of P450 catalytic diversity. 相似文献
15.
The reactions of NADPH- or dithionite-dependent reduction of cytochrome P-450 were studied using a stopped flow technique. It was found that the kinetic curves for both reactions may be fitted by a sum of the two exponents. The arrhenius plots for the fast phase rate constants are linear for both reactions. On the contrary, the breaks on the corresponding plots for the slow phase rate constants are observed at 22 and 33 degrees C for cytochrome P-450 reduction by dithionite and at 31 degrees C for NADPH-dependent reduction of cytochrome P-450. The coincidence of the values of the rate constants and activation energy (56 +/- 5 kJ/mol) for the fast phase of NADPH-dependent reduction of cytochrome P-450 with values of catalytic constants and activation energy for demethylation of tertiary amines suggests that the first electron transfer process from NADPH-cytochrome P-450 reductase to cytochrome P-450 may be the rate-limiting step. A diverse character of the kinetic parameters for the two cytochrome P-450 reduction reactions is indicative of different nature of biphasity of these processes. 相似文献
16.
Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d. 下载免费PDF全文
J M Jacobs P R Sinclair W J Bement R W Lambrecht J F Sinclair J A Goldstein 《The Biochemical journal》1989,258(1):247-253
We have previously shown that uroporphyrinogen is oxidized to uroporphyrin by microsomes (microsomal fractions) from 3-methylcholanthrene-pretreated chick embryo liver [Sinclair, Lambrecht & Sinclair (1987) Biochem. Biophys. Res. Commun. 146, 1324-1329]. We report here that a specific antibody to chick liver methylcholanthrene-induced cytochrome P-450 (P-450) inhibited both uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in chick-embryo liver microsomes. 3-Methylcholanthrene-pretreatment of rats and mice markedly increased uroporphyrinogen oxidation in hepatic microsomes as well as P-450-mediated ethoxyresorufin de-ethylation. In rodent microsomes, uroporphyrinogen oxidation required the addition of NADPH, whereas chick liver microsomes required both NADPH and 3,3',4,4'-tetrachlorobiphenyl. Treatment of rats with methylcholanthrene, hexachlorobenzene and o-aminoazotoluene increased uroporphyrinogen oxidation and P-450d, whereas phenobarbital did not increase either. The contribution of hepatic P-450c and P-450d to uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in methylcholanthrene-induced microsomes was assessed by using specific antibodies to P-450c and P-450d. Uroporphyrinogen oxidation by methylcholanthrene-induced rat liver microsomes was inhibited up to 75% by specific antibodies to P-450d, but not by specific antibodies to P-450c. In contrast, ethoxyresorufin de-ethylation was inhibited only 20% by anti-P450d but 70% by anti-P450c. Methylcholanthrene-induced kidney microsomes which contain P-450c but non P-450d did not oxidize uroporphyrinogen. These data indicate that hepatic P-450d catalyses uroporphyrinogen oxidation. We suggest that the P-450d-catalysed oxidation of uroporphyrinogen has a role in the uroporphyria caused by hexachlorobenzene and other compounds. 相似文献
17.
Cobalt-substituted cytochrome P-450cam 总被引:2,自引:0,他引:2
G C Wagner I C Gunsalus M Y Wang B M Hoffman 《The Journal of biological chemistry》1981,256(12):6266-6273
Reconstitution of the apo-cytochrome with cobalt protoporphyrin provides a faithful P-450cam analogue as characterized by optical, ligand-binding, and enzymatic parameters. The thiol and cyanide complexes exhibit Soret "hyper" spectra, not previously observed in cobalt porphyrins. Substrate-induced spectral changes and limited stereospecific hydroxylation activity are retained in the cobalt P-450cam. The EPR (electron paramagnetic resonance) spectra of the reduced cobaltous protein indicate clearly an endogenous axial ligand other than a nitrogenous base and support an assignment of thiolate coordination. A thiolate ligand is also indicated by EPR measurements in the oxygenated cobaltous analogue. By analogy, these studies suggest that the native ferrous and oxygenated P-450cam states retain a thiolate axial ligand. 相似文献
18.
Crystalline cytochrome P-450cam 总被引:3,自引:0,他引:3
19.
Resonance Raman scattering experiments on CO-complexed cytochrome P-450scc from bovine adrenocortical mitochondria demonstrate the simultaneous enhancement of v(Fe-CO) stretching and bound v(C-O) stretching frequencies at 477 and 1953 cm-1, respectively. These assignments were made on the basis of frequency shifts with the isotope 12C18O. This unusually low v(Fe-CO) stretching frequency in cytochrome P-450scc, compared with other CO-complexed hemoproteins such as CO-hemoglobin and -myoglobin, is presumably due to the thiolate ligation to the heme iron trans to CO and due to the linear and perpendicular configuration of CO binding to the heme. 相似文献
20.
G Hui Bon Hoa C Di Primo M Geze P Douzou J A Kornblatt S G Sligar 《Biochemistry》1990,29(29):6810-6815
This paper is concerned with camphor-bound bacterial cytochrome P-450 and processes that alter its spin-state equilibrium and influence its transition to the nonactive form, cytochrome P-420, as well as its renaturation to the native camphor-bound cytochrome P-450. Spermine, a polycation carrying a charge of 4 +, and potassium, a monovalent cation, were shown to differently cause an increase of high-spin content of camphor-bound cytochrome P-450. The spermine-induced spin transition saturates around 75% of the high spin; a further addition of KCl to the spermine-containing sample shifted the spin state to 95% of the high spin. The volume change of these spin transitions as measured by the use of high pressure indicated an excess of -40 mL/mol for the sample containing potassium as compared to that containing spermine. These results suggest that the proposed privileged site for potassium has not been occupied by spermine and that pressure forces both the camphor and the potassium ion from its sites, allowing solvent movement into the protein as well as ordering of solvent by the excluded camphor and potassium. Cytochrome P-420 was produced from cytochrome P-450 by hydrostatic pressure in the presence of potassium, spermine, and cysteine. Potassium cation shows a bigger effect on the stability of cytochrome P-450 than spermine or cysteine, as revealed by a higher value of the pressure of half-inactivation, P1/2, and a bigger inactivation volume change. However, potassium cation did not promote renaturation of cytochrome P-420 to cytochrome P-450 while the presence of spermine did.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献