首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的:利用生物发光成像技术非侵入性地监测活体裸鼠原位肝癌发展过程。方法:将包含有萤火虫萤光素酶基因的pCI-neo-Luc载体转染人肝癌HepG2细胞系,筛选获得具有高萤光素酶活性的细胞克隆;利用流式细胞仪对萤光素酶表达的稳定性进行初步研究,并分析细胞的生物发光情况;持续表达萤光素酶的肿瘤细胞培养扩增后被植入裸鼠皮下,2周后以形成的异体瘤作为供体瘤,进行肝脏原位移植手术;对建立的肝癌原位移植模型,用影像学资料显示肿瘤部位,用IVIS成像系统动态监测肿瘤生长情况。结果:体外影像的结果显示,表达萤光素酶细胞的数量与发光强度呈正相关;活体成像的结果显示。成功地建立了萤光素酶标记的原位肝癌动物模型。结论:生物发光成像可以监测活体内肝癌演进过程,为抗肿瘤药物的筛选和评价提供了新的手段和工具。  相似文献   

2.
3.
Mouse models are commonly used for studying hepatocellular carcinoma (HCC) biology and exploring new therapeutic interventions. Currently three main modalities of HCC mouse models have been extensively employed in pre-clinical studies including chemically induced, transgenic and transplantation models. Among them, transplantation models are preferred for evaluating in vivo drug efficacy in pre-clinical settings given the short latency, uniformity in size and close resemblance to tumors in patients. However methods used for establishing orthotopic HCC transplantation mouse models are diverse and fragmentized without a comprehensive comparison. Here, we systemically evaluate four different approaches commonly used to establish HCC mice in preclinical studies, including intravenous, intrasplenic, intrahepatic inoculation of tumor cells and intrahepatic tissue implantation. Four parameters—the latency period, take rates, pathological features and metastatic rates—were evaluated side-by-side. 100% take rates were achieved in liver with intrahepatic, intrasplenic inoculation of tumor cells and intrahepatic tissue implantation. In contrast, no tumor in liver was observed with intravenous injection of tumor cells. Intrahepatic tissue implantation resulted in the shortest latency with 0.5cm (longitudinal diameter) tumors found in liver two weeks after implantation, compared to 0.1cm for intrahepatic inoculation of tumor cells. Approximately 0.1cm tumors were only visible at 4 weeks after intrasplenic inoculation. Uniform, focal and solitary tumors were formed with intrahepatic tissue implantation whereas multinodular, dispersed and non-uniform tumors produced with intrahepatic and intrasplenic inoculation of tumor cells. Notably, metastasis became visible in liver, peritoneum and mesenterium at 3 weeks post-implantation, and lung metastasis was visible after 7 weeks. T cell infiltration was evident in tumors, resembling the situation in HCC patients. Our study demonstrated that orthotopic HCC mouse models established via intrahepatic tissue implantation authentically reflect clinical manifestations in HCC patients pathologically and immunologically, suggesting intrahepatic tissue implantation is a preferable approach for establishing orthotopic HCC mouse models.  相似文献   

4.
Bioluminescence imaging (BLI) is a highly sensitive tool for visualizing tumors, neoplastic development, metastatic spread, and response to therapy. Although BLI has engendered much excitement due to its apparent simplicity and ease of implementation, few rigorous studies have been presented to validate the measurements. Here, we characterize the nature of bioluminescence output from mice bearing subcutaneous luciferase-expressing tumors over a 4-week period. Following intraperitoneal or direct intratumoral administration of luciferin substrate, there was a highly dynamic kinetic profile of light emission. Although bioluminescence was subject to variability, strong correlations (r >.8, p <.001) between caliper measured tumor volumes and peak light signal, area under light signal curve and light emission at specific time points were determined. Moreover, the profile of tumor growth, as monitored with bioluminescence, closely resembled that for caliper measurements. The study shows that despite the dynamic and variable nature of bioluminescence, where appropriate experimental precautions are taken, single time point BLI may be useful for noninvasive, high-throughput, quantitative assessment of tumor burden.  相似文献   

5.
Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xenograft models in mice by a minimally invasive method, ultrasound guided injection (USGI) comparable to highly invasive surgical orthotopic injection (SOI) methods. This optimized method prevented injection complications such as recoil of cells through the injection canal or leakage of cells out of the pancreas into the peritoneal cavity. Tumor growth was monitored in vivo and quantified by ultrasound imaging weekly, tumors were also detected by in vivo fluorescence imaging using a tumor targeted molecular probe. The mean tumor volumes for the USGI and SOI models after 2 weeks of tumor growth were 205 mm(3) and 178 mm(3) respectively. By USGI of human pancreatic cancer cell lines, human orthotopic pancreatic cancer xenografts were established. Based on ultrasound imaging, the orthotopic human pancreatic cancer xenograft take rate was 100% for both human pancreatic cancer cell lines used, MiaPaCa-2 and Su86.86, with mean tumor volumes of 28 mm(3)and 30 mm(3). We demonstrated that this USGI method is feasible, reproducible, facile, minimally invasive and improved compared to the highly-invasive SOI method for establishing orthotopic pancreatic tumor xenograft models suitable for molecular imaging.  相似文献   

6.
To determine the most robust and reproducible parameters for noninvasively estimating tumor cell burden in a murine model, we used real-time in vivo bioluminescent imaging to assess the growth kinetics and dissemination of luciferase-transfected Raji B-cell lymphoma. Bioluminescent signals were acquired every minute for 40 minutes after luciferin injection every other day post-tumor injection. The total 40-minute area under the curve (AUC) of photon intensity (photons/second) was calculated and compared with simplified fixed time point observations (every 5 minutes from 5 to 40 minutes after substrate injection). There was substantial variability in the shape of the time signal intensity curves at different stages of tumor growth in both the intravenous and subcutaneous models. The coefficient of variance in the AUC was 0.27 (intravenous) and 0.36 (subcutaneous) as values determined by fitting the curve, whereas the 20-minute time point measurement varied at 0.29 (intravenous) and 0.37 (subcutaneous). In both the subcutaneous and intravenous models, single time point measurements at 20 minutes had the highest correlation value with AUC. This simplified single time point measurement appears appropriate to estimate the total tumor burden in this model, but the substantial variance at each measurement must be considered in experimental designs.  相似文献   

7.
目的采用活体成像技术比较三株荧光素酶标记的小鼠乳腺癌细胞在小鼠体内生长及转移情况,为研究肿瘤转移提供理想的动物模型以及活体分析方法。方法以荧光素酶(luciferase,Luc)作为报告基因导入小鼠乳腺癌细胞4T1、66c14和4TO7中,经G418筛选获得稳定表达荧光素酶的细胞克隆并扩大培养。标记细胞稀释成1×107cells/mL,取0.1 mL进行乳腺原位及尾静脉接种BALB/c小鼠,制作小鼠乳腺原位和尾静脉移植瘤模型,比较三株细胞在小鼠体内生长及转移情况。结果获得稳定表达荧光素酶基因的细胞克隆,将Luc标记的4T1、66c14、4TO7细胞对BALB/c小鼠乳腺原位接种后7 d,均有肿瘤生长,接种后28 d,4T1细胞乳腺原位移植瘤最大,66c14细胞瘤体次之,4TO7细胞瘤体最小;接种后35 d,三株细胞乳腺原位移植瘤大小较一致,但4T1和66c14原位移植瘤均发生转移,其中4T1细胞较66c14细胞转移严重,而4TO7细胞未见转移;接种后42 d,三株细胞乳腺原位移植瘤大小无明显差别,而4T1和66c14细胞随天数的增加,移植瘤转移程度逐渐严重,4T1较66c14细胞转移更严重,呈广泛性转移,4TO7细胞仍未见转移。将Luc标记的4T1、66c14、4TO7细胞对BALB/c小鼠尾静脉接种后7 d,小动物活体成像发现小鼠肺部均能检测到荧光,其中4T1细胞接种的小鼠肺部荧光信号最强,且小鼠陆续死亡;4TO7细胞接种小鼠肺部荧光信号次之;66c14细胞接种小鼠肺部荧光信号最弱。尾静脉接种后14 d,4TO7和66c14细胞随着观察天数的增加,转移程度逐渐严重,4TO7细胞接种小鼠肺部荧光信号较66c14细胞强且小鼠陆续死亡。结论乳腺原位自发转移模型较尾静脉转移模型更真实反应了肿瘤细胞在体的转移特性,且能完整地呈现肿瘤转移的全过程,可作为研究肿瘤转移的最理想模型。  相似文献   

8.
In vivo bioluminescence imaging is becoming a very important tool for the study of a variety of cellular and molecular events or disease processes in living systems. In vivo bioluminescence imaging is based on the detection of light emitted from within an animal. The light is generated as a product of the luciferase-luciferin reaction taking place in a cell. In this study, we implanted mice with tumour cells expressing either a high or a low level of luciferase. In vivo bioluminescence imaging was used to follow tumour progression. Repeated luciferin injection and imaging of high and low luciferase-expressing tumours was performed. While low luciferase-expressing tumours grew similarly to vector controls, growth of the high luciferase-expressing tumours was severely inhibited. The observation that a high level of luciferase expression will inhibit tumour cell growth when an animal is subjected to serial in vivo bioluminescence imaging is potentially an important factor in designing these types of studies.  相似文献   

9.
4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds.The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result.Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures.Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents.Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.Open in a separate windowClick here to view.(48M, flv)  相似文献   

10.
Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD) along with an optical reporter gene (luciferase). Following intratumoral injection of the vector into orthotopic 9 L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC) gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging for assessment of gene expression and therapeutic efficacy.  相似文献   

11.
The mouse glioma 261 (GL261) is recognized as an in vivo model system that recapitulates many of the features of human glioblastoma multiforme (GBM). The cell line was originally induced by intracranial injection of 3-methyl-cholantrene into a C57BL/6 syngeneic mouse strain (1); therefore, immunologically competent C57BL/6 mice can be used. While we use GL261, the following protocol can be used for the implantation and monitoring of any intracranial mouse tumor model. GL261 cells were engineered to stably express firefly luciferase (GL261-luc). We also created the brighter GL261-luc2 cell line by stable transfection of the luc2 gene expressed from the CMV promoter. C57BL/6-cBrd/cBrd/Cr mice (albino variant of C57BL/6) from the National Cancer Institute, Frederick, MD were used to eliminate the light attenuation caused by black skin and fur. With the use of albino C57BL/6 mice; in vivo imaging using the IVIS Spectrum in vivo imaging system is possible from the day of implantation (Caliper Life Sciences, Hopkinton, MA). The GL261-luc and GL261-luc2 cell lines showed the same in vivo behavior as the parental GL261 cells. Some of the shared histological features present in human GBMs and this mouse model include: tumor necrosis, pseudopalisades, neovascularization, invasion, hypercellularity, and inflammation (1). Prior to implantation animals were anesthetized by an intraperitoneal injection of ketamine (50 mg/kg), xylazine (5 mg/kg) and buprenorphine (0.05 mg/kg), placed in a stereotactic apparatus and an incision was made with a scalpel over the cranial midline. A burrhole was made 0.1 mm posterior to the bregma and 2.3mm to the right of the midline. A needle was inserted to a depth of 3mm and withdrawn 0.4 mm to a depth of 2.6 mm. Two μl of GL261-luc or GL261-luc2 cells (10(7) cells/ml) were infused over the course of 3 minutes. The burrhole was closed with bonewax and the incision was sutured. Following stereotactic implantation the bioluminescent cells are detectable from the day of implantation and the tumor can be analyzed using the 3D image reconstruction feature of the IVIS Spectrum instrument. Animals receive a subcutaneous injection of 150 μg luciferin /kg body weight 20 min prior to imaging. Tumor burden is quantified using mean tumor bioluminescence over time. Tumor-bearing mice were observed daily to assess morbidity and were euthanized when one or more of the following symptoms are present: lethargy, failure to ambulate, hunched posture, failure to groom, anorexia resulting in >10% loss of weight. Tumors were evident in all of the animals on necropsy.  相似文献   

12.
L Liu  H Beck  X Wang  HP Hsieh  RP Mason  X Liu 《PloS one》2012,7(8):e43314
BPR0L075, 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole, is a tubulin-binding agent that inhibits tubulin polymerization by binding to the colchicine-binding site. BPR0L075 has shown antimitotic and antiangiogenic activity in vitro. The current study evaluated the vascular-disrupting activity of BPR0L075 in human breast cancer mammary fat pad xenografts using dynamic bioluminescence imaging. A single dose of BPR0L075 (50 mg/kg, intraperitoneally (i.p.)) induced rapid, temporary tumor vascular shutdown (at 2, 4, and 6 hours); evidenced by rapid and reproducible decrease of light emission from luciferase-expressing orthotopic MCF7 and MDA-MB-231 breast tumors after administration of luciferin substrate. A time-dependent reduction of tumor perfusion after BPR0L075 treatment was confirmed by immunohistological staining of the perfusion marker Hoechst 33342 and tumor vasculature marker CD31. The vasculature showed distinct recovery within 24 hours post therapy. A single i.p. injection of 50 mg/kg of BPR0L075 initially produced plasma concentrations in the micromolar range within 6 hours, but subsequent drug distribution and elimination caused BPR0L075 plasma levels to drop rapidly into the nanomolar range within 24 h. Tests with human umbilical vein endothelial (HUVEC) cells and tumor cells in culture showed that BPR0L075 was cytotoxic to both tumor cells and proliferating endothelial cells, and disrupted pre-established vessels in vitro and ex vivo. In conclusion, BPR0L075 caused rapid, albeit, temporary tumor vascular shutdown and led to reduction of tumor perfusion in orthotopic human breast cancer xenografts, suggesting that this antimitotic agent may be useful as a vascular-disrupting cancer therapy.  相似文献   

13.
目的:验证双标记生物发光成像活体观测MSCs在肝癌裸鼠模型向肿瘤病灶的趋化作用的可行性。方法:应用fluorescence(荧光)与bioluminescence(生物发光)两种成像方法,对MSCs进行CM-Di I荧光标记及对人肝癌细胞Hep G2进行Fluc-慢病毒感染并由此建立裸鼠肝癌模型,构建双标记成像系统,应用精诺真小动物光学成像仪在裸鼠肝癌模型中观测间充质干细胞向肿瘤的趋化作用。结果:在鼠尾静脉注射标记MSCs细胞后21天荧光成像可见MSCs主要积聚于肿瘤病灶处及肝脏。生物发光成像后可监测到病灶处由luciferase标记肿瘤细胞(Hep G2)发出荧光;将荧光成像与生物发光成像所得图像经后处理融合后,可见证间充质干细胞像肿瘤病灶定向迁徙的生物过程。经肿瘤病理切片证实间充质干细胞成功迁徙至肿瘤病灶中。结论:应用间充质干细胞双标记光学成像系统实现MSCs在活体内对肿瘤的趋化过程进行观测是可行的。这种成像方法可作为下一步以MSCs为载体的肿瘤基因治疗的有效监测手段。  相似文献   

14.
We investigated the effects of Gram-negative bacterial lipopolysaccharide (LPS) on luciferase expression in transgenic reporter mice in which luciferase expression is driven by the nuclear factor kappaB (NF-kappaB)-dependent portion of the human immunodeficiency virus-1 (HIV-1) long terminal repeat (HIV-1 LTR). Using these mice, we dissected the sources of luciferase activity at the organ level by (a) assessing luciferase activity in organ homogenates, (b) bioluminescence imaging in vivo, and (c) bioluminescence imaging of individual organs ex vivo. Luciferin dosage was a critical determinant of the magnitude of photon emission from these reporter mice. Photon emission increased at doses from 0.5-6 mg of luciferin given by intraperitoneal (IP) injection. The differential between basal and LPS-induced bioluminescence was maximal at 3-6 mg of luciferin. Luciferase expression was highly inducible in lungs, liver, spleen, and kidneys after a single IP injection of LPS, as assessed by luciferase activity measurements in organ homogenates. Luciferase activity was also induced in the forebrain by treatment with IP LPS. In contrast, aerosolized LPS produced a response localized to the lungs as assessed by both bioluminescence and ex vivo luciferase assay measurements. These studies demonstrate the utility of luciferase reporter mice for determining organ-specific gene expression in response to local and systemic stimuli.  相似文献   

15.
Compartmentalization of specialized functions to discrete locales is a fundamental theme of eucaryotic organization in cells. We report here that bioluminescence of the dinoflagellate alga Gonyaulax originates in vivo from discrete subcellular loci that are intrinsically fluorescent. We demonstrate this localization by comparing the loci of fluorescence and bioluminescence as visualized by image-intensified video microscopy. These fluorescent particles appeared to be the same as the previously described in vitro "scintillons." We attribute the endogenous fluorescence to that of the bioluminescence substrate, luciferin, because (a) the fluorescence excitation and emission characteristics are comparable, (b) the autofluorescence is lost after exhaustive stimulation of bioluminescence, and (c) the fluorescence of discharged particles in vitro can be restored by adding luciferin. The fluorescence in vivo exhibits a standard property of circadian (daily) rhythmicity: under constant environmental conditions, the intensity of the particle fluorescence fluctuates cyclically (it is maximal during the night phase and is low during the day). Thus, luciferin is localized within the cell at discrete loci from which the bioluminescence emanates; the cellular quantity of luciferin is rhythmically modulated by the circadian clock.  相似文献   

16.
Radiolabeled annexin V may provide an early indication of the success or failure of anticancer therapy on a patient-by-patient basis as an in vivo marker of tumor cell killing. An important question that remains is when, after initiation of treatment, should annexin V imaging be performed. To address this issue, we obtained simultaneous in vivo measurements of tumor burden and uptake of radiolabeled annexin V in the syngeneic orthotopic murine BCL1 lymphoma model using in vivo bioluminescence imaging (BLI) and small animal single-photon emission computed tomography (SPECT). BCL1 cells labeled for fluorescence and bioluminescence assays (BCL1-gfp/luc) were injected into mice at a dose that leads to progressive disease within two to three weeks. Tumor response was followed by BLI and SPECT before and after treatment with a single dose of 10 mg/kg doxorubicin. Biodistribution analyses revealed a biphasic increase of annexin V uptake within the tumor-bearing tissues of mice. An early peak occurring before actual tumor cells loss was observed between 1 and 5 hr after treatment, and a second longer sustained rise from 9 to 24 hr after therapy, which heralds the onset of tumor cell loss as confirmed by BLI. Multimodality imaging revealed the temporal patterns of tumor cell loss and annexin V uptake revealing a better understanding of the timing of radiolabeled annexin V uptake for its development as a marker of therapeutic efficacy.  相似文献   

17.
GFP标记的肿瘤生长和转移的整体荧光成像   总被引:6,自引:0,他引:6  
Fugene 6脂质体介导pEGFP-C1转染人源肺癌细胞(SPC-A1),经G418抗性筛选和96孔板有限稀释获得稳定高表达GFP的单克隆细胞株SPC-A1-EGFP。裸鼠腹腔注射SPC-A1-EGFP细胞建立自发转移模型;裸鼠尾静脉注射SPC-A1-EGFP细胞建立实验转移模型。利用整体光学成像系统(wllole-body optical imaging system)对荷瘤鼠整体荧光成像。结果表明,整体光学成像系统可实时非侵入监测腹腔肿瘤生长和扩散过程,通过胸腔皮瓣窗chest—wall skin-flap window)可低侵入检测肺转移。该研究为在体监测原位移植瘤的自发转移和发现抗肿瘤新药物提供了良好实验平台。  相似文献   

18.
BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.  相似文献   

19.
Orthotopic models of various types of tumors are widely used in anti-tumor therapeutic experiments in preclinical studies. However, there are few ways to appropriately monitor therapeutic effect in orthotopic tumor models, especially for tumors invisible from the outside. In this study we aimed to establish a non-invasive semi-quantitative bioluminescent imaging method of monitoring an orthotopic esophageal cancer mouse model. We confirmed that the TE8 esophageal cancer cell line implanted orthotopically into the abdominal esophagus of nu/nu mice (n = 5) developed not only a main tumor at the implanted site, but also local lymph node metastases and peritoneal disseminations within 6 weeks after inoculation. We established a TE8 cell line that stably expressed the firefly luciferase gene (TE8-Luc). We showed that TE8-Luc cells implanted subcutaneously into nu/nu mice (n = 5) grew over time until 5 weeks after inoculation. Tumor volume was strongly correlated with luminescent intensity emitted from the tumor, which was quantified using the IVIS imaging system. We then showed that TE8-Luc cells implanted orthotopically into the mouse abdominal esophagus (n = 8) also formed a tumor and that the luminescent intensity of such a tumor, as detected by IVIS, increased over time until 7 weeks after inoculation and was therefore likely to reflect tumor progression. We therefore propose that this orthotopic esophageal cancer model, monitored using the non-invasive semi-quantitative IVIS imaging system, will be useful for in vivo therapeutic experiments against esophageal cancer. This experimental setting is expected to contribute to the development of novel therapeutic technologies for esophageal cancer in preclinical studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号