首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
According to recent statistics, 96 million apparent dengue infections were estimated worldwide in 2010. This figure is by far greater than the WHO prediction which indicates the rapid spread of this disease posing a growing threat to the economy and a major challenge to clinicians and health care services across the globe particularly in the affected areas.This article aims at bringing to light the current epidemiological and clinical status of the dengue fever. The relationship between genetic mutations, single nucleotide polymorphism (SNP) and the pathophysiology of disease progression will be put into perspective. It will also highlight the recent advances in dengue vaccine development.Thus far, a significant progress has been made in unraveling the risk factors and understanding the molecular pathogenesis associated with the disease. However, further insights in molecular features of the disease and the development of animal models will enormously help improving the therapeutic interventions and potentially contribute to finding new preventive measures for population at risk.  相似文献   

4.
The ultimate goal for biology is to become a science that formulates our understanding of subcellular, cellular and multicellular systems in terms of quantitative, holistic models that are underpinned by the rigorous principles of the physical sciences and mathematics. This can only be achieved through interdisciplinary research that draws heavily on the expertise and technologies of the physical sciences, engineering, computation and mathematics. Here, I discuss the benefits and challenges (both intellectual and practical) of interdisciplinary bioscience.  相似文献   

5.
What are the key considerations to take into account when large-scale epigenomics projects are being implemented?  相似文献   

6.
7.
8.
SnapShot: forkhead transcription factors I   总被引:1,自引:0,他引:1  
Tuteja G  Kaestner KH 《Cell》2007,130(6):1160
  相似文献   

9.
10.
Gene therapy: progress and challenges.   总被引:6,自引:0,他引:6  
Gene therapy is the delivery of new genetic material into a patient's somatic cells for the treatment of disease and is made possible through the development of viral and non-viral gene transfer vectors. In the first five years of gene therapy, clinical studies failed to yield efficacy data with the vectors available at that time. The lack of consistent clinical benefit prompted the United States National Institute of Health Recombinant DNA Advisory Committee to evaluate gene therapy research and conclude that substantial improvements in gene transfer vectors were needed in the areas of vector safety and control of the level and duration of gene expression, and to increase the understanding of the biological interaction of gene transfer vectors with the host. We will describe the progress in development of gene delivery technology, focusing on improvements in vector safety, analysis of vector biodistribution and GMP manufacturing of viral and non-viral gene transfer systems over the last six years since the report. Whereas 5 years ago, investigators tested every vector for every potential disease indication, the accumulated database now enables investigators to select a single vector based upon it's known performance in a wide number of animal models and human clinical studies. We will also highlight several directions investigators have taken to improve the safety and efficacy of gene therapy vectors.  相似文献   

11.
12.
Eukaryotic transcription factors   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
WRKY transcription factors   总被引:7,自引:0,他引:7  
  相似文献   

15.
16.
17.
18.
Intrinsic disorder in transcription factors   总被引:8,自引:0,他引:8  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号