首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine.  相似文献   

2.
A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes of Amx 820 and EUB 338 mixed. Denitrification was observed through the reductions of both COD and nitrate-nitrite concentrations under anaerobic/anoxic conditions. By providing a stoichiometric ratio of nitrite to ammonium nitrogen with addition nitrate nitrogen, a gradual reduction of ANAMMOX activity was found with an increase of COD concentration in a range of 100-400 mg l(-1). This is equivalent to the COD to N ratio of 0.9-2.0. The COD concentration was found to be a control variable for process selection between ANAMMOX reaction and denitrification. A reduction of COD and nitrite-nitrate concentrations in all reactors confirmed the undergone concurrent denitrification which thrives when sufficient organic matter is available. COD concentration over 300 mg l(-1) was found to inactivate or eradicate ANAMMOX communities.  相似文献   

3.
Anaerobic ammonium oxidation is a recent addition to the microbial nitrogen cycle, and its metabolic pathway, including the production and conversion of its intermediate hydrazine, is not well understood. Therefore, the effect of hydroxylamine addition on the hydrazine metabolism of anaerobic ammonium-oxidizing (anammox) bacteria was studied both experimentally and by mathematical modeling. It was observed that hydroxylamine was disproportionated biologically in the absence of nitrite into dinitrogen gas and ammonium. Little hydrazine accumulated during this process; however, rapid hydrazine production was observed when nearly all hydroxylamine was consumed. A mechanistic model is proposed in which hydrazine is suggested to be continuously produced from ammonium and hydroxylamine (possibly via nitric oxide) and subsequently oxidized to N(2). The electron acceptor for hydrazine oxidation is hydroxylamine, which is reduced to ammonium. A decrease in the hydroxylamine reduction rate, therefore, leads to a decrease in the hydrazine oxidation rate, resulting in the observed hydrazine accumulation. The proposed mechanism was verified by a mathematical model which could explain and predict most of the experimental data.  相似文献   

4.
Studies on the oxidation of ammonia by Nitrosomonas   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Free-energy calculations for pH7 showed that the oxidation of ammonia to hydroxylamine is endergonic and that the oxidations of hydroxylamine to nitrite and hydrazine to nitrogen are exergonic. It is suggested that the oxidation of ammonia requires the expenditure of energy. 2. The anaerobic dehydrogenation of hydrazine to nitrogen by extracts of the autotrophic nitrifying micro-organism, Nitrosomonas, in the presence of methylene blue as electron acceptor, was less rapid than the anaerobic dehydrogenation of hydroxylamine to nitric oxide. The inhibition by hydrazine of the dehydrogenation of hydroxylamine was attributed to substrate competition. 3. Whole cells in air did not produce nitrite from hydrazine. They produced nitrite from low concentrations of hydroxylamine more rapidly than from equimolar concentrations of ammonia; this result is consistent if hydroxylamine is an intermediate of the oxidation of ammonia. 4. The production of nitrite from hydroxylamine by whole cells was slightly inhibited by hydrazine, but the production of nitrite from ammonia was greatly inhibited and small amounts of hydroxylamine were formed. These results suggested that the dehydrogenation of hydroxylamine supplied energy required for the oxidation of ammonia and that hydroxylamine appeared because the energy production was replaced by that of the dehydrogenation of hydrazine. 5. The oxidation of hydroxylamine by whole cells was not inhibited by thiourea, but micromolar concentrations of the metal-binding agent markedly inhibited the oxidation of ammonia to hydroxylamine, suggesting that the oxidation of ammonia involved copper. A possible mechanism for the activation of ammonia is suggested.  相似文献   

5.
Nitrogen transformations in anaerobic sediments and leachate in Lake Taihu were simulated in the laboratory. Ammonium, nitrate and nitrite were analyzed after incubation under anaerobic conditions. Different reductive states and pH values were obtained by using different electron donors, such as glucose, sucrose, potato starch and sodium acetate. Chemical nitrogen transformation mechanisms were discussed relative to physico-chemical properties of lake sediment. Results demonstrated that nitrogen transformations in anaerobic conditions supplemented with different electron donors varied, and supplementation with certain electron donors may enhance nitrogen removal from anaerobic sediments. Among the four electron donors studied, higher nitrogen removal efficiencies were observed with acetate and starch. Saccharides, such as glucose, sucrose and starch, stimulate nitrate reduction to nitrite, while acetate stimulates nitrate reduction to ammonium.  相似文献   

6.
Simultaneous ANAMMOX and denitrification (SAD) process in batch tests   总被引:1,自引:0,他引:1  
The occurrence of simultaneous anaerobic ammonia oxidation and nitrate reduction (SAD) processes by enrichment culture in the presence of glucose were clarified in batch tests. Nitrate conversion and the formation of interim by-products were investigated under autotrophic and mixotrophic conditions. Eventually, the nitrite was fully consumed and co-occurred with ammonia oxidation. The effect of penicillin G and methanol on the SAD process was also investigated. Methanol addition led to complete loss of ANAMMOX activity at concentrations as low as 1?mM. Penicillin G has little effect on the SAD process. Scanning electron microscopy (SEM) observation and denaturing gradient gel electrophoresis (DGGE) analysis revealed that ANAMMOX bacteria and co-existing bacteria are responsible for the SAD process. In conclusion, this study indicates that the ratio of nitrogen to organic carbon, and the cooperation and competition between microbes can affect the dynamics of this process. It has a potential application to remove ammonia and nitrate in the presence of organic matter by the SAD process.  相似文献   

7.
A novel denitrifying bacterium, strain 72Chol, was enriched and isolated under strictly anoxic conditions on cholesterol as sole electron donor and carbon source. Strain 72Chol grew on cholesterol with oxygen or nitrate as electron acceptor. Strictly anaerobic growth in the absence of oxygen was demonstrated using chemically reduced culture media. During anaerobic growth, nitrate was initially reduced to nitrite. At low nitrate concentrations, nitrite was further reduced to nitrogen gas. Ammonia was assimilated. The degradation balance measured in cholesterol-limited cultures and the amounts of carbon dioxide, nitrite, and nitrogen gas formed during the microbial process indicated a complete oxidation of cholesterol to carbon dioxide. A phylogenetic comparison based on total 16S rDNA sequence analysis indicated that the isolated micro-organism, strain 72Chol, belongs to the β2-subgroup in the Proteobacteria and is related to Rhodocyclus, Thauera, and Azoarcus species. Received: 16 July 1996 / Accepted: 5 December 1996  相似文献   

8.
Plants often face hypoxic stress as a result of flooding and waterlogged soils. During these periods, they must continue ATP production and nitrogen metabolism if they are to survive. The normal pathway of reductive nitrogen assimilation in non-legumes, nitrate, and nitrite reductase can be inhibited during low oxygen conditions that are associated with the buildup of toxic metabolites such as nitrite and nitric oxide, so the plant must also have a means of detoxifying these molecules. Compared to animal hemoglobins, plant and cyanobacterial hemoglobins are adept at reducing nitrite to nitric oxide under anaerobic conditions. Here we test their abilities to reduce hydroxylamine, a proposed intermediate of nitrite reductase, under anaerobic conditions. We find that class 1 rice nonsymbiotic hemoglobin (rice nsHb1) and the hemoglobin from the cyanobacterium Synechocystis (SynHb) catalyze the reduction of hydroxylamine to ammonium at rates 100-2500 times faster than animal hemoglobins including myoglobin, neuroglobin, cytoglobin, and blood cell hemoglobin. These results support the hypothesis that plant and cyanobacterial hemoglobins contribute to anaerobic nitrogen metabolism in support of anaerobic respiration and survival during hypoxia.  相似文献   

9.
Growth of Nitrobacter by dissimilatoric nitrate reduction   总被引:2,自引:0,他引:2  
Abstract Eight strains of the genus Nitrobacter grew under anaerobic conditions in the presence of nitrate. The growth was inhibited by nitrate concentrations above 0.5 mM. By a special culture technique inhibition caused by nitrite was abolished. Nitrate oxidizing cells grew in gas tight culture flasks as a biofilm on a gas-permeable silicone tubing. The biofilm allowed nitrate-reducing cells to grow at a low nitrite concentration. These cells grew either actively motile in the anaerobic medium, or in anaerobic zones of the biofilm. They produced nitrite and ammonia. Nitrogen balance calculations established a loss of inorganic nitrogen for 5 of 8 strains. This implies that nitrate-reducing cells produced furthermore volatile nitrogen compounds. N2O was detected by gas chromatography.  相似文献   

10.
Key Physiology of Anaerobic Ammonium Oxidation   总被引:19,自引:1,他引:18       下载免费PDF全文
The physiology of anaerobic ammonium oxidizing (anammox) aggregates grown in a sequencing batch reactor was investigated quantitatively. The physiological pH and temperature ranges were 6.7 to 8.3 and 20 to 43°C, respectively. The affinity constants for the substrates ammonium and nitrite were each less than 0.1 mg of nitrogen per liter. The anammox process was completely inhibited by nitrite concentrations higher than 0.1 g of nitrogen per liter. Addition of trace amounts of either of the anammox intermediates (1.4 mg of nitrogen per liter of hydrazine or 0.7 mg of nitrogen per liter of hydroxylamine) restored activity completely.  相似文献   

11.
Novel microbial nitrogen removal processes   总被引:47,自引:0,他引:47  
The present-day wastewater treatment practices can be significantly improved through the introduction of new microbial treatment technologies. Recently, several new processes for nitrogen removal have been developed. These new nitrogen removal technologies provide practicable options for treating nitrogen-laden wastewaters. The new processes are based on partial nitrification of ammonium to nitrite combined with anaerobic ammonium oxidation. These processes include the single reactor system for high ammonia removal over nitrite (SHARON) process, which involves part conversion of ammonium to nitrite; the anaerobic ammonium oxidation (ANAMMOX) process, which involves anaerobic ammonium oxidation; and the completely autographic nitrogen removal over nitrite (CANON) process, which involves nitrogen removal within one reactor under oxygen-limited conditions. These new processes target the removal of nitrogen from wastewaters containing significant quantities of ammonium.  相似文献   

12.
Key physiology of anaerobic ammonium oxidation.   总被引:87,自引:0,他引:87  
The physiology of anaerobic ammonium oxidizing (anammox) aggregates grown in a sequencing batch reactor was investigated quantitatively. The physiological pH and temperature ranges were 6.7 to 8.3 and 20 to 43 degrees C, respectively. The affinity constants for the substrates ammonium and nitrite were each less than 0.1 mg of nitrogen per liter. The anammox process was completely inhibited by nitrite concentrations higher than 0.1 g of nitrogen per liter. Addition of trace amounts of either of the anammox intermediates (1. 4 mg of nitrogen per liter of hydrazine or 0.7 mg of nitrogen per liter of hydroxylamine) restored activity completely.  相似文献   

13.
Characteristics of nitrogenous substrate conversion by anammox enrichment   总被引:1,自引:0,他引:1  
The characteristics of nitrogenous substrates conversion by anammox enrichment were investigated using batch experiments. The anammox enrichment was proved able to convert hydroxylamine to hydrazine, as well as convert hydrazine to ammonia anaerobically, with the average conversion rates of 0.207 and 0.031 mmol gVSS−1 h−1. It could convert hydroxylamine and nitrite simultaneously, with ammonia as an intermediate product. The maximum conversion rates of hydroxylamine and nitrite were 0.535 and 0.145 mmol gVSS−1 h−1, respectively. Their conversion rates were enhanced by 26.7% and 120.7%, respectively, by raising the ratio of hydroxylamine to nitrite from 1:1 to 2:1. The characteristics of nitrogenous substrate conversion by anammox enrichment could be explained using the speculative anammox pathway based on van de Graaf model.  相似文献   

14.
Assimilation of nitrate and various other inorganic nitrogen compounds by different yeasts was investigated. Nitrate, nitrite, hydroxylamine, hydrazine, ammonium sulphate, urea and L-asparagine were tested as sole sources of nitrogen for the growth of Candida albicans, C. pelliculosa, Debaryomyces hansenii, Saccharomyces cerevisiae, C. tropicalis, and C. utilis. Ammonium sulphate and L-asparagine supported the growth of all the yeasts tested except D. hansenii while hydroxylamine and hydrazine failed to support the growth of any. Nitrate and nitrite were assimilated only by C. utilis. Nitrate utilization by C. utilis was also accompanied by the enzymatic activities of NAD(P)H: nitrate oxidoreductase (EC 1.6.6.2) and NAD(P)H: nitrite oxidoreductase (EC 1.6.6.4), but not reduced methyl viologen-or FAD-nitrate oxidoreductases (EC 1.7.99.4). It is demonstrated here that nitrate and nitrite reductase activities are responsible for the ability of C. utilis to assimilate primary nitrogen.  相似文献   

15.
16.
Two approaches based on ne w process development and biological nitrogen transformation were investigated in a bench study for removing nitrogen as N2 gas from poultry waste while stabilizing the wastes. The process, known as "Anammox", was explored in batch anaerobic culture using serum bottles. The Anammox process involves the use of nitrite as an electron acceptor in the bacterially mediated oxidation of ammonia to yield N2. Studies are described wherein nitrite was added to poultry waste and the effects on ammonium levels were monitored. About 13-22% ammonium removal was observed with the inoculation of returned activated sludge, and the total ammonium reduction was not proportional to the reduction of nitrite, thereby suggesting that Anammox was less competitive under the conditions in our studies. The addition of nitrite and nitrate was not inhibitory to the process based on gas generation and COD reduction. The classical nitrogen removal process of nitrification followed with denitrification offers a more reliable basis for nitrogen removal from poultry wastes.  相似文献   

17.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

18.
The processes involved in nitrate metabolism in Halobacterium of the Dead Sea are part of a dissimilatory pathway operating in these bacteria. The induction of both nitrate and nitrite reductases is shown to depend on the presence of nitrate and of anaerobic conditions. The gas products of the denitrification process were identified as nitrous oxide and nitrogen. Some properties of two of the enzymes involved in this process, nitrate and nitrite reductases, are reported. It is shown that the 2 Feferredoxin, which is present in large quantities in Halobacterium of the Dead Sea, can serve as an electron donor for nitrite reduction by nitrite reductase. It is suggested that the presence of a dissimilatory pathway for the reduction of nitrate in Halobacterium of the Dead Sea can be used as a tool for its classification.  相似文献   

19.
20.
We isolated Mu dI1734 insertion mutants of Klebsiella pneumoniae that were unable to assimilate nitrate or nitrite as the sole nitrogen source during aerobic growth (Nas- phenotype). The mutants were not altered in respiratory (anaerobic) nitrate and nitrite reduction or in general nitrogen control. The mutations were linked and thus defined a single locus (nas) containing genes required for nitrate assimilation. beta-Galactosidase synthesis in nas+/phi(nas-lacZ) merodiploid strains was induced by nitrate or nitrite and was inhibited by exogenous ammonia or by anaerobiosis. beta-Galactosidase synthesis in phi(nas-lacZ) haploid (Nas-) strains was nearly constitutive during nitrogen-limited aerobic growth and uninducible during anaerobic growth. A general nitrogen control regulatory mutation (ntrB4) allowed nitrate induction of phi(nas-lacZ) expression during anaerobic growth. This and other results suggest that the apparent anaerobic inhibition of phi(nas-lacZ) expression was due to general nitrogen control, exerted in response to ammonia generated by anaerobic (respiratory) nitrate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号