首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous observations suggested that incubating fibroblasts at elevated temperature caused over-modification of type I procollagen by post-translational enzymes because of a delay in folding of the collagen triple helix. Here, human skin fibroblasts were incubated at 40.5 instead of 37 degrees C, and the type I procollagen secreted into the medium was isolated. Analysis of the protein indicated that there was an increase of about 5 residues of hydroxylysine/alpha chain and about 1 residue of glycosylated hydroxylysine/alpha chain. Assays with procollagen N-proteinase indicated that the N-propeptide of the over-modified collagen was cleaved at a decreased rate, apparently because the over-modification altered the conformation-dependent cleavage site for the enzyme. Assays in a system for assembly of collagen into fibrils demonstrated that the over-modified protein had a higher critical concentration for self-assembly. Also, the fibrils formed from the over-modified collagen at 31 and 29 degrees C had smaller diameters than fibrils formed from normal type I collagen. The results provide direct evidence for earlier suggestions that post-translational over-modification of a fibrillar collagen can alter the morphology of the fibrils formed. The results also indicate that some of the biological consequences of the mutations in type I procollagen causing heritable disorders must be ascribed to the effects of post-translational over-modifications that frequently occur as secondary consequences of changes in the primary structure of the protein.  相似文献   

2.
We have studied the structure and metabolism of type I procollagen in a case of perinatal lethal osteogenesis imperfecta (OI) type II. Cultured skin fibroblasts from the proband synthesized both normal and abnormal forms of type I procollagen. Some abnormal, overmodified molecules were secreted by OI cells, although less efficiently than normal molecules from control cells. The OI fibroblasts accumulated large amounts of abnormal proalpha1(I) and proalpha2(I) chains intracellularly. The extracellular collagenolytic activity was decreased compared to control cells. Furthermore, OI cells produced less type I procollagen and demonstrated lower capacity to synthesize DNA than control cells. We have found that in contrast to prolinase activity, the activity of prolidase (an enzyme essential for collagen synthesis and cell growth) is also significantly reduced in OI cells. No differences were found in the amount of the enzyme protein recovered from both the OI and control cells. However, we found that expressions of beta1 integrin and insulin-like growth factor-I receptor (receptors known to play an important role in up regulation of prolidase activity) were decreased in OI cells compared to control cells. The decrease in prolidase activity may provide an important mechanism of altered cell growth and collagen metabolism involved in producing the perinatal lethal form of the OI phenotype.  相似文献   

3.
Type I procollagen was purified from the medium of dermal fibroblasts cultured from four individuals with osteogenesis imperfecta (OI) type II who had mutations in the COL1A1 gene of type I procollagen. The procollagens were mixtures of normal molecules and molecules that contained substitutions of aspartate for glycine 97, arginine for glycine 550, cysteine for glycine 718, and aspartate for glycine 883 in one or both of the alpha 1 (I) chains of the molecule. The procollagens were cleaved more slowly than control type I procollagen by procollagen N-proteinase. Double-reciprocal plots of initial relative velocities and initial substrate concentrations indicated that the OI procollagens were all cleaved slowly by N-proteinase because of decreased Vmax, rather than increased Km. This suggested that slow cleavage of the OI procollagens by N-proteinase was the result of slow conversion of the N-proteinase-procollagen complex. Further experiments showed that the vertebrate collagenase A fragment of the aspartate for glycine alpha 1(I) 883 OI procollagen that contained the N-proteinase cleavage site but not the site of the substitution was also cleaved more slowly by N-proteinase than the normal vertebrate collagenase A fragments in the samples. These data show, for the first time, that an altered triple-helical structure is propagated from the site of a substitution of a bulky residue for glycine to the amino-terminal end of the procollagen molecule and disrupts the conformation of the N-proteinase cleavage site. Rotary shadowing electron microscopy of molecules in the preparation of cysteine for glycine alpha 1(I)-718 showed the presence of a kink in approximately 5% of a population of molecules in which 60% were abnormal and 20% contained a disulfide bond. In contrast, procollagens containing aspartate and arginine for glycine were indistinguishable by rotary shadowing electron microscopy from those in control samples. The results here confirm previous suggestions that substitution of cysteine for glycine in the alpha 1(I) chain of type I collagen can introduce a kink near the site of the substitution. However, the presence of a kink is not a prerequisite for delayed cleavage of abnormal procollagens by N-proteinase.  相似文献   

4.
5.
Collagen synthesis was examined in skin fibroblasts from a patient with a variant of Ehlers-Danlos syndrome. The relative rate of collagen synthesis to total protein synthesis in the patient's fibroblasts was always one-half of that in fibroblasts from normal controls. Total collagen synthesis, as assessed by quantification of total hydroxyproline, was also significantly lower than that of controls, indicating that the rate of collagen synthesis by the patient's fibroblasts was decreased compared with that by normal fibroblasts. Analysis of procollagen and collagen components showed the absence of the pro alpha 2(I) chain and its derivatives. Dot-blot and Northern-blot analyses showed the patient's fibroblasts to contain less than 10% of the mRNAs for pro alpha 2(I) found in control fibroblasts. In spite of these results, Southern blot analysis of genomic DNA indicated the presence of the same number of genes for the pro alpha 2(I) collagen chain in the patient's fibroblasts as in control fibroblasts, suggesting malfunctioning pro alpha 2(I) collagen genes as the cause for failure of the patient's fibroblasts to synthesize pro alpha 2(I) collagen chains.  相似文献   

6.
Skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta synthesized both apparently normal type I procollagen and a type I procollagen that had slow electrophoretic mobility because of posttranslational overmodifications. The thermal unfolding of the collagen molecules as assayed by protease digestion was about 2 degrees C lower than normal. It is surprising, however, that collagenase A and B fragments showed an essentially normal melting profile. Assay of cDNA heteroduplexes with a new technique involving carbodiimide modification indicated a mutation at about the codon for amino acid 550 of the alpha 1(I) chain. Subsequent amplification of the cDNA by the PCR and nucleotide sequencing revealed a single-base mutation that substituted an aspartate codon for glycine at position alpha 1-541 in the COL1A1 gene. The results here confirm previous indications that the effects of glycine substitutions in type I procollagen are highly position specific. They also demonstrate that a recently described technique for detecting single-base differences by carbodiimide modification of DNA heteroduplexes can be effectively employed to locate mutations in large genes.  相似文献   

7.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

8.
9.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

10.
Syrian hamster embryo fibroblasts transformed by 4-nitroquinoline-1-oxide (NQT-SHE cells) failed to synthesize the pro-alpha 1(I) subunit of type I procollagen but continued to synthesize altered forms of the other subunit, pro-alpha 2(I) (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). This was unusual, since synthesis of the two subunits generally is coordinately regulated. Present experiments using cell-free translation and hybridization of RNA from normal and transformed Syrian hamster fibroblasts with labeled pro-alpha 1(I) DNA probes show that mRNA for pro-alpha 1(I) is absent from the transformant. In contrast, dot-blot and Southern blot hybridizations of cellular DNAs with pro-alpha 1(I) DNA probes demonstrated that the transformed cells contained pro-alpha 1(I) gene sequences and that the gross structure of the gene was unchanged by transformation. mRNA for the other type I procollagen subunit, pro-alpha 2(I), was present in transformed cells and the major collagenous polypeptide translated from this RNA migrated like the normal pro-alpha 2 subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translated procollagen chain was cleaved to an alpha 2(I)-sized collagen chain by pepsin at 4 degrees C. These studies provide a molecular basis for the observed collagen phenotype of NQT-SHE cells.  相似文献   

11.
12.
To investigate the molecular mechanism of intracellular degradation of type I collagen in normal corneal endothelial cells (CEC), we studied the role of prolyl 4-hydroxylase (P4-H) and protein disulfide-isomerase (PDI; the beta subunit of P4-H) during procollagen I biosynthesis. When the subcellular localization of P4-H and PDI was determined, P4-H demonstrated a characteristic diffuse endoplasmic reticulum (ER) pattern, whereas PDI showed a slightly more restricted distribution within the ER. When colocalization of procollagen I with the enzymes was examined, procollagen I and PDI showed a large degree of colocalization. P4-H and procollagen I were predominantly colocalized at the perinuclear site. When colocalization of type IV collagen with PDI and P4-H was examined, type IV collagen was largely colocalized with PDI, which showed a wider distribution than type IV collagen. Type IV collagen is similarly colocalized with P4-H, except in some perinuclear sites. The colocalization profiles of procollagen I with both PDI and P4-H were not altered in cells treated with alpha,alpha'-dipyridyl compared to those of the untreated cells. The underhydroxylated type IV collagen demonstrated a colocalization profile with PDI similar to that observed with procollagen I, while the underhydroxylated type IV collagen was predominantly colocalized with P4-H at the perinuclear sites. Immunoblot analysis showed no real differences in the amounts of the beta subunit/PDI and the catalytic alpha subunit of P4-H in CEC compared to those of corneal stromal fibroblasts (CSF). When protein-protein association was determined, procollagen I was associated with PDI much more in CEC than it was in CSF, whereas type IV collagen showed no differential association specificity to PDI in both cells. Limited proteolysis of the newly synthesized intracellular procollagen I with pepsin showed that procollagen I in CEC was degraded by pepsin, whereas CSF contained type I collagen composed of alpha1(I) and alpha2(I). These findings suggest that procollagen I synthesized in CEC is not in triple helical conformation and that the improperly folded procollagen I may be preferentially associated with PDI before targeting to the intracellular degradation.  相似文献   

13.
14.
The electrophoretic mobilities of the collagen and procollagen type I and III chains synthesized by the fibroblasts isolated from patients with type I Ehlers-Danlos syndrome as well as a set of peptides obtained by splitting of pro alpha 1(I) and pro alpha 2(I) type I procollagens by cyanbromide are not different from the normal ones. The fact demonstrates the absence of long insertions or deletions, or the sufficient defects in intracellular chain modifications. The changes were also nor registered for the ratio of type I and III collagens from the digested by pepsin preparations of protein accumulating in the culture media of the cultured skin fibroblasts from patients. The studied strains of cultured fibroblasts from patients suffering the Ehlers-Danlos syndrome have the trend to increased accumulation of partially processed chains of proc alpha 1(I) and proc alpha 2(I) type I procollagen and to the increased ratio of pro alpha 1(I) to pro alpha 2(I).  相似文献   

15.
Previous studies demonstrated that the thermal stability of the procollagen triple helix can be assayed by digesting the protein for short periods with high concentrations of trypsin and chymotrypsin. Here we cleaved human type I procollagen or collagen with vertebrate collagenase to generate A fragments from the three-quarter amino termini and B fragments from the one-quarter carboxy termini of the molecules. The thermal stabilities of the fragments were then assayed by rapid trypsin/chymotrypsin digestion. Both fragments were resistant up to 36 degrees C and completely degraded between 37 degrees C and 39 degrees C. In subsequent experiments the same assay was carried out with type I procollagens synthesized by fibroblasts from two patients with lethal variants of osteogenesis imperfecta. With one, the A fragments were selectively destabilized, an observation consistent with previous data indicating that the mutation in the patient produced a deletion of 84 amino acids from the middle of the alpha 1(I) chain. With procollagen synthesized by fibroblasts from the second patient the B fragments were selectively destabilized, an observation consistent with preliminary data indicating a mutation that alters the primary structure of the carboxy-terminal region of the alpha 1(I) chain. Therefore, the procedures described here present a simple and direct method for locating mutations that destabilize the collagen triple helix.  相似文献   

16.
Cultured skin fibroblasts from a proband with an autosomal dominant variant of osteogenesis inperfecta were found to synthesize approximately equal amounts of normal pro-alpha 2(I) chains of type I procollagen and pro-alpha 2(I) chains which migrated more rapidly when examined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The structural alteration was present in alpha 2(I)-CB4, a cyanogen bromide fragment containing amino acid residues 7-327 of the alpha 2 chain, and it appeared to be a deletion of about 30 amino acids. The pro-alpha 2(I) chains with the apparent deletion associated with normal pro-alpha 1(I) chains synthesized by the same fibroblasts and formed triple-helical type I procollagen. The presence of the altered pro-alpha 2 chains in trimers of procollagen had two consequences in terms of the physical properties of the molecule. One was to decrease the thermal stability of the protein as judged by resistance to proteolysis at 37 degrees C and by the helix to coil transition as assayed by circular dichroism. The second consequence was to make type I procollagen containing the shortened pro-alpha 2(I) chains resistant to digestion by procollagen N-proteinase. The simplest explanation for the data is that the apparent deletion in half the pro-alpha 2(I) chains produced a partial unfolding of the N-terminal region of type I procollagen which prevented processing of the protein by procollagen N-proteinase.  相似文献   

17.
Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the 'slow' alpha (I)'- and alpha 2(I)'-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)'- and alpha 2(I)'-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)'-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)'- and alpha 2(I)'-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.  相似文献   

18.
The majority of collagen mutations causing osteogenesis imperfecta (OI) are glycine substitutions that disrupt formation of the triple helix. A rare type of collagen mutation consists of a duplication or deletion of one or two Gly-X-Y triplets. These mutations shift the register of collagen chains with respect to each other in the helix but do not interrupt the triplet sequence, yet they have severe clinical consequences. We investigated the effect of shifting the register of the collagen helix by a single Gly-X-Y triplet on collagen assembly, stability, and incorporation into fibrils and matrix. These studies utilized a triplet duplication in COL1A1 exon 44 that occurred in the cDNA and gDNA of two siblings with lethal OI. The normal allele encodes three identical Gly-Ala-Hyp triplets at aa 868-876, whereas the mutant allele encodes four. The register shift delays helix formation, causing overmodification. Differential scanning calorimetry yielded a decrease in T(m) of 2 degrees C for helices with one mutant chain and a 6 degrees C decrease in helices with two mutant chains. An in vitro binary co-processing assay of N-proteinase cleavage demonstrated that procollagen with the triplet duplication has slower N-propeptide cleavage than in normal controls or procollagen with proalpha1(I) G832S, G898S, or G997S substitutions, showing that the register shift persists through the entire helix. The register shift disrupts incorporation of mutant collagen into fibrils and matrix. Proband fibrils formed inefficiently in vitro and contained only normal helices and helices with a single mutant chain. Helices with two mutant chains and a significant portion of helices with one mutant chain did not form fibrils. In matrix deposited by proband fibroblasts, mutant chains were abundant in the immaturely cross-linked fraction but constituted a minor fraction of maturely cross-linked chains. The profound effects of shifting the collagen triplet register on chain interactions in the helix and on fibril formation correlate with the severe clinical consequences.  相似文献   

19.
20.
Synthesis of type I procollagen was examined in fibroblasts from a proband with a lethal perinatal variant of osteogenesis imperfecta. After trypsin digestion of the type I procollagen, a portion of the alpha 1 (I) chains was recovered as disulfide-linked dimers. Digestion of the protein with vertebrate collagenase and mapping of cyanogen bromide peptides suggested that a new cysteine residue was present between residues 551 and 775 of the alpha 1 (I) chain. Sequencing of cloned cDNAs prepared using mRNA from the proband's fibroblasts demonstrated that some of the clones contained a single base mutation that converted the glycine codon in amino acid position 748 of the alpha 1 (I) chain to a cysteine codon. About 80% of the type I procollagen synthesized by the proband's fibroblasts had a decreased thermal stability. The results, therefore, were consistent with the conclusion that normal pro-alpha 1 (I) chains and pro-alpha 1 (I) chains containing a cysteine residue in the alpha chain domain were synthesized in about equal amounts and incorporated randomly into type I procollagen. However, only about 10% of the alpha 1 (I) chains generated by trypsin digestion were disulfide-linked. Further studies demonstrated a decreased rate of secretion of type I procollagen containing the new cysteine residue and decreased processing of the protein by procollagen N-proteinase in cultures of postconfluent fibroblasts. Both parents were phenotypically normal and their fibroblasts synthesized only normal type I procollagen. Therefore, the mutation in the proband was a sporadic one and is very likely to have caused the connective tissue fragility that produced the lethal phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号