首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dietary deficiency of thiamine or pyridoxine has been shown to produce hyperoxaluria and renal stone formation in man and experimental animals. To determine the possible contribution of exogenous glyoxylate and oxalate, the intestinal transport of [14C] - oxalate and [14C] - glyoxylate was measured in vitamin B1 and B6 deficient rats and their respective pair-fed controls. Results indicate that glyoxylate and oxalate are passively diffused from lumen to lamina propria in thiamine deficient and their pair-fed controls with no significant change in the rate of uptake of both the substrates. However B6 deficient rats showed a significant enhancement in the rate of oxalate uptake due to development of a new biphasic transport system. The rate of glyoxylate uptake by simple passive diffusion remained unaltered in pyridoxine deficiency.  相似文献   

2.
Arterial hypertension in the spontaneously hypertensive rat (SHR) is associated with an abnormal Ca2+ homeostasis, compared with its normotensive control, the Wistar Kyoto rat (WKY). In particular, epithelial Ca2+ transport is perturbed, with intestinal absorption and renal tubular reabsorption being decreased in the adolescent and adult SHR. In the present study we examined Ca2+ uptake into isolated duodenal brush-border membrane vesicles (BBMV) in 12-14 week-old male rats. This uptake can be separated in a nonsaturable and a saturable component. The latter follows Michaelis-Menten kinetics. Vmax of this component was found to be significantly higher (p less than 0.05) in SHR than in WKY (0.58 +/- 0.19 versus 0.35 +/- 0.06 nmol/mg protein x 10 sec, mean +/- SD) whereas Km did not differ. Thus, the defect in the intestinal Ca2+ absorption previously identified in the SHR of this age is not due to a decrease in Ca uptake at the level of the duodenal brush-border membrane, but is most likely located in the baso-lateral membrane.  相似文献   

3.
2'-Phosphophloretin (2'-PP), a phosphorylated derivative of the plant chalcone, was synthesized. The effect of 2'-PP, on Na(+)-dependent phosphate uptake into intestinal brush-border membrane vesicles (BBMV) isolated from rabbit and rat duodenum and jejunum was examined. 2'-PP decreased Na(+)-dependent phosphate uptake into rabbit BBMV with an IC(50) of 55 nM and into rat BBMV with an IC(50) of 58 nM. 2'-PP did not affect Na(+)-dependent glucose, Na(+)-dependent sulfate, or Na(+)-dependent alanine uptake by rabbit intestinal BBMVs. 2'-PP inhibition of rabbit intestinal BBMV Na(+)-dependent phosphate uptake was sensitive to external phosphate concentration, suggesting that 2'-PP inhibition of Na(+)-dependent phosphate uptake was competitive with respect to phosphate. Binding of [(3)H]2'-PP to rabbit intestinal BBMV was examined. Binding of [(3)H]2'-PP was Na(+)-dependent with a K(0.5) for Na(+)(Na(+) concentration for 50% 2'-PP binding) of 30 mM. The apparent K(s) for Na(+)-dependent [(3)H]2'-PP binding to rabbit BBMVs was 58 nM in agreement with the IC(50) for 2'-PP inhibition of Na(+)-dependent phosphate uptake. These results indicate that 2'-PP bound to rabbit or rat intestinal BBMV Na(+)-phosphate cotransporter and inhibited Na(+)-dependent phosphate uptake. In rats treated with 2'-PP by daily gavage, the effect of 2'-PP on serum phosphate, serum glucose, and serum calcium was examined. In a concentration-dependent manner, 2'-PP reduced serum phosphate by 45% 1 wk after starting treatment. 2'-PP did not alter serum calcium or serum glucose. The apparent IC(50) for 2'-PP in vivo was 3 microM.  相似文献   

4.
1. The transport of L- and DL-2-hydroxy 4-methylthiobutanoic acid (HMB), the methionine hydroxy analogue, by brush border membrane vesicles (BBMV) from chick small intestine was the sum of a saturable Michaelian component and a diffusive term. 2. Unlike that of L- and DL-MET, uptake was Na+-independent and electroneutral. 3. The inhibition of L-HMB transport by L-lactate, a structural analogue, and D-HMB as well, was of the competitive type. 4. Preloading of BBMV with D-HMB but not with L-lactate or L-MET trans-stimulated the influx of labelled L-HMB. 5. HMB uptake by rat and chick intestinal BBMV exhibited similar characteristics but the chick nonstereospecific transport system appeared to be unable to carry out L-lactate translocation.  相似文献   

5.
The role of N-linked oligosaccharide side chains in the biogenesis and function of Na+-coupled transporters in renal luminal brush-border membrane (BBM) is not known. We examined the question of how in vivo inhibition by alkaloid swainsonine of alpha-mannosidase, a key enzyme in processing of glycoproteins in the Golgi apparatus, affects Na+/H+ antiport and Na+/Pi symport as well as activities of other transporters and enzymes in rat renal BBM. Administration of swainsonine to thyroparathyroidectomized rats, control or treated with 3,5,3'-triiodothyronine, markedly decreased the rate of Na+/H+ antiport, but had no effect on the rate of Na+/Pi symport across renal BBM vesicles (BBMV). Moreover, administration of swainsonine did not change activities of Na+ gradient, ([extravesicular Na+] greater than [intravesicular Na+])-dependent transport of D-glucose, L-proline, or the amiloride-insensitive 22Na+ uptake by BBMV; the activities of the BBM enzymes alkaline phosphatase, gamma-glutamyltransferase, or leucine aminopeptidase in BBMV were also not changed. The in vitro enzymatic deglycosylation of BBM by incubating freshly isolated BBMV with bacterial endoglycosidase F also resulted in a decreased rate of Na+/H+ antiport, but not Na+-coupled symports of Pi, L-proline, and D-glucose, or the activities of the BBM enzymes were not significantly affected. Similar incubation with endoglycosidase H was without effect on any of these parameters. Both the modification of BBMV glycoproteins by administration fo swainsonine in vivo as well as the in vitro incubation of BBMV with endoglycosidase F resulted in a decrease of the apparent Vmax of Na+/H+ antiport, but did not change the apparent Km of this antiporter for extravesicular Na+ and did not increase H+ conductance of BBM. Taken together, our findings suggest that intact N-linked oligosaccharide chains of the biantennary complex type in renal BBM glycoproteins are required, directly or indirectly, for the transport function of the Na+/H+ antiporter inserted into BBM of renal proximal tubules.  相似文献   

6.
Tubular transport of oxalate is thought to be an energy-mediated process which may contribute to the renal deposition of calcium oxalate in a variety of pathologic states. In order to examine this possibility, the renal handling of oxalate was investigated in rat renal cortical slices in vitro. Slices incubated in vitro with 1 microM [14C]oxalate in Krebs-Ringer bicarbonate buffer at 25 degrees C for 180 min achieved a mean slice to medium ratio of 2.8 +/- 0.08 (SEM) and a mean tissue concentration of 7.7 +/- 0.2 mumol/kg dry wt (N = 64). Section freeze-dry autoradiographs demonstrated maximum uptake within proximal tubule cells but no crystals were evident. Substituting N2 for O2, adding KCN, or removing Ca2+ increased uptake of 14C-oxalate. Dinitrophenol (DNP) and iodoacetamide (IoAc), however, significantly decreased, and O degrees C eliminated slice uptake. Slices incubated with 100 microM [14C]oxalate showed a further increase in tissue accumulation and the appearance of [14C]oxalate crystals. Crystals formed in vitro were deposited throughout the tissue. Oxalic acid did not appear to share the organic acid by renal cortical slices in vitro is largely independent of energy-mediated mechanisms.  相似文献   

7.
Secondary hyperparathyroidism has been attributed to be responsible for the generalized aminoaciduria and phosphaturia of vitamin D deficiency. Since PTH acts in the kidney to generate cAMP, we explored the possibility that its synthetic analog, dbcAMP, would alter the renal transport of taurine (an amino acid lost in the urine in vitamin D deficiency) and Pi. Exposure of renal BBMV prepared from normal and vitamin D-calcium-deficient rats to dbcAMP at concentrations ranging between 10(-4) and 10(-7) M did not alter taurine uptake by these vesicles. Higher dbcAMP concentrations blunted uptake, but these concentrations reduced intravesicular volume, thus representing an artifact of osmolarity. Preincubation of BBMV with dbcAMP for times between 0 and 60 min at 0 or 25 degrees C also did not alter taurine accumulation. Hypotonic lysis of BBMV, allowing entry of the cyclic nucleotide, followed by isotonic resealing did not influence taurine uptake. The addition of potassium fluoride (to inhibit phosphodiesterase activity) and ATP (as an energy source) did not alter taurine accumulation at 60 sec. The uptake of Pi, which is influenced by PTH, was decreased by 25% following exposure to dbcAMP on the internal surface of the vesicle. These data indicate that the taurinuria observed in vitamin D deficiency is unlikely to be related to a PTH-induced increase in intracellular cAMP, unlike the changes in Pi transport, which is sensitive to cyclic nucleotides.  相似文献   

8.
Somatostatin: a metabolic regulator   总被引:1,自引:0,他引:1  
K N Dileepan  S R Wagle 《Life sciences》1985,37(25):2335-2343
Somatostatin, the hypothalamic release-inhibiting factor, has been found to stimulate gluconeogenesis in rat kidney cortical slices. Stimulation by somatostatin was linear and dose-dependent. Other bioactive peptides such as cholecystokinin, gastrointestinal peptide, secretin, neurotensin, vasoactive intestinal peptide, pancreatic polypeptide, beta endorphin and substance P did not affect the renal gluconeogenic activity. Somatostatin-induced gluconeogenesis was blocked by phentolamine (alpha adrenergic antagonist) and prazosin (alpha1 adrenergic antagonist) but not by propranolol (beta adrenergic antagonist) and yohimbine (alpha2 adrenergic antagonist) suggesting that the effect is via alpha1 adrenergic stimuli. Studies on the involvement of Ca2+ revealed that tissue depletion and omission of Ca2+ from the reaction mixture would abolish the stimulatory effect of somatostatin. Furthermore, somatostatin enhanced the uptake of 45calcium in renal cortical slices which could be blocked by lanthanum, an inhibitor of Ca2+ influx. It is proposed that the stimulatory effect of somatostatin on renal gluconeogenesis is mediated by alpha1 adrenergic receptors, or those which functionally resemble alpha1 receptors and that the increased influx of Ca2+ may be the causative factor for carrying out the stimulus.  相似文献   

9.
The effect of parathyroid hormone (PTH) on Ca2+ uptake was studied in brush-border membrane vesicles (BBMV) prepared from the kidneys of dogs administered 4-5 micrograms/kg of bovine PTH 1-84 in vivo. PTH stimulated Ca2+ uptake at 20 s of incubation from control values of 231 +/- 21 to 306 +/- 30 pmol/mg of protein, p less than 0.001. The stimulation of Ca2+ uptake by PTH was not reversed by incubation of the BBMV with the Ca2+ ionophore, despite the fact that Ca2+ uptake was several times greater than the expected uptake at equilibrium, indicating that most of the uptake represented Ca2+ binding to the BBMV. In BBMV from kidneys exposed to PTH, hypotonic lysis or increasing the osmolality of the solution external to the BBMV did not affect Ca2+ uptake. These data also indicated that the largest fraction of Ca2+ uptake in the presence of a chemical potential represented binding of Ca2+ to BBMV. Ca2+ binding was initially to the exterior of the BBMV, then translocated within the membrane and to the interior vesicular face as assessed by chelation of Ca2+ bound to the BBMV by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Incubation of BBMV from kidneys exposed to PTH with gentamicin, which competes with Ca2+ for anionic phospholipid-binding sites, reversed the stimulatory effects of PTH on Ca2+ uptake. Phosphorylation of BBMV and PTH treatment in vivo had similar effects on BBMV phospholipid composition increasing the levels of anionic phospholipids. Phosphorylation of the BBMV also produced gentamicin-inhibitable increases in membrane Ca2+ binding. Phosphorylation of BBMV from kidneys exposed to PTH was inhibited suggesting a higher state of phosphorylation in vivo. The data demonstrate that PTH administered in vivo stimulated Ca2+ binding in BBMV that was gentamicin inhibitable and associated with an increase in the membrane content of anionic phospholipids.  相似文献   

10.
Vitamin A deficiency has been reported to result in mild structural and functional changes within the small intestine. The objective of this study was to measure the impact of vitamin A deficiency in the rat on several functional aspects of beta-carotene uptake and intestinal retinyl ester hydrolysis. These included uptake of (14)C-beta-carotene by brush border membrane vesicles (BBMV) and in vitro activity of intrinsic retinyl ester hydrolase (REH). Rats (n = 33) were randomly assigned to receive one of three dietary treatments: vitamin A deficient (-VA), vitamin A sufficient pair-fed (PF), or vitamin A sufficient free access-fed (FA). Liver, serum retinol, and growth data were used to verify clinical vitamin A deficiency. Rats in the -VA group were clinically vitamin A deficient by Day 56 on a vitamin A-free diet and, at that point, all rats were randomly assigned to one of two experimental treatments: BBMV studies or REH activity assays. Uptake of (14)C-beta-carotene by BBMV was significantly suppressed (P < 0.05) in -VA rats when compared to both PF and FA control rats during early passive uptake equilibration (10-20 sec). Uptake was also significantly decreased by BBMV isolated from -VA rats compared to PF controls, but not FA controls, after a 10-min incubation (P < 0.05). In vitro activity of REH was not impacted by vitamin A deficiency in rats, although a trend for greater activity from -VA rats was noted. These data suggest that vitamin A deficiency impairs enterocyte membrane uptake of beta-carotene without altering the enzymatic activity of intrinsic REH.  相似文献   

11.
Our laboratory has recently reported that intestinal bile acid malabsorption in cystic fibrosis (CF) is a primary mucosal cell defect. Others have suggested that elevated intracellular Ca++ levels in other cell types in CF may represent a common primary dysfunction in Ca++ efflux in these cells. We examined the possibility that intestinal bile acid absorption and Ca++ efflux in mucosal cells may be linked physiologically. Brush border membrane vesicles (BBMV) prepared from guinea pig ileum served as the experimental model to test this hypothesis. Ca++ (2.5×10?3M) present in the incubation medium did not alter the uptake of taurocholic acid (TCA) by BBMV. Also, TCA uptake into BBMV preloaded with Ca++ was not significantly different from that in BBMV not previously loaded with Ca++. Furthermore, with TCA present in the incubation medium, Ca++ efflux from preloaded BBMV was not altered. These data suggest that ileal TCA uptake, as measured by BBMV, is not dependent upon either intra- or extravesicular Ca++. Also, Ca++ efflux from BBMV is unaffected by TCA uptake. Although separate lines of evidence suggest that intestinal bile acid malabsorption and reduced plasma membrane Ca++ flux are primary defects in CF, we conclude that in the normal intestine these functions are independent physiological processes.  相似文献   

12.
Oxalate bound specifically to the intestinal brush-border membrane (BBM) of pyridoxine-deficient rats, but not to BBM of control rats. The binding of oxalate to intestinal BBM of pyridoxine-deficient rats was rapid, reversible, dependent on concentration of oxalate, temperature sensitive and competitively inhibited by oxalate analogues. Kinetic analysis of the oxalate binding data revealed induction of two distinct classes of receptor site for oxalate. The high-affinity oxalate binding sites, reached saturation at 60-70 nM oxalate, had a Kd of 24.29 nM and the number of binding sites were 30 pmoles (i.e., 1.8.10(13) molecules). The low-affinity oxalate binding sites, could not be saturated under experimental conditions upto 1 microM oxalate. It had a Kd of 487.5 nM and the number of binding sites were 156 pmoles (i.e., 9.4.10(13) molecules). The apparent energy of activation was 19 kcal/mol. The half-saturation concentration of inhibitor (IC50) of oxalate was 0.4.10(-5) M, while all other structural analogues of oxalate had higher IC50 values. Among the competitive inhibitors tested IC50 was in the following order, pyruvate greater than maleate greater than oxaloacetate greater than glyoxylate greater than parabonate greater than oxalate. These kinetic characteristics indicate involvement of a membrane protein in oxalate binding and transport in rat intestinal brush-border membrane in pyridoxine deficiency.  相似文献   

13.
Since phosphonoformic acid (PFA) acts as a specific competitive inhibitor of Na+-Pi co-transport across renal brush-border membrane (BBM), we employed the [14C]PFA as a probe to determine the mechanism of its interaction with rat renal BBM. The binding of [14C]PFA to BBM vesicles (BBMV), with Na+ present in extravesicular medium (Na+o), was time- and temperature-dependent. The replacement of Na+o with other monovalent cations reduced the PFA binding by -80%. Cl- was the most effective accompanying monovalent anion as NaCl for maximum PFA binding. The Na+o increased the apparent affinity of BBMV for [14C]PFA binding, but it did not change the maximum binding capacity. The maximum [14C]PFA binding was achieved at Na+o approximately equal to 50 mM. The extent of Na+-dependent [14C]PFA binding correlated (r = 0.98; p less than 0.01) with percent inhibition by an equimolar dose of PFA of the (Na+o greater than Na+i)-dependent BBMV uptake of 32Pi. Intravesicular Na+ (Na+i) decreased [14C]PFA binding, on BBMV, and this inhibition by Na+i was dependent on the presence of Na+o. The increase in Na+i, at constant [Na+]o, decreased the Vmax, but not the Km, for [14C]PFA binding on BBMV. Bound [14C]PFA was displaced from BBMV by phosphonocarboxylic acids proportionally (r = 0.99; p less than 0.05) to their ability to inhibit (Na+o greater than Na+i)-gradient-dependent Pi transport, whereas other monophosphonates, diphosphonates, L-proline, or D-glucose did not influence the [14C]PFA binding. The Na+-dependent binding of [14C]PFA and of [3H]phlorizin by BBMV was 10 times higher than binding of these ligands to renal basolateral membranes and to mitochondria. [14C]PFA probably binds onto the same locus on the luminal surface of BBM, where Pi and Na+ form a ternary complex with the Na+-Pi co-transporter.  相似文献   

14.
The presence of a Na(+)/D-mannose cotransport activity in brush-border membrane vesicles (BBMV), isolated from either rat small intestine or rat kidney cortex, is examined. In the presence of an electrochemical Na(+) gradient, but not in its absence, D-mannose was transiently accumulated by the BBMV. D-Mannose uptake into the BBMV was energized by both the electrical membrane potential and the Na(+) chemical gradient. D-Mannose transport vs. external D-mannose concentration can be described by an equation that represents a superposition of a saturable component and another component that cannot be saturated up to 50 microM D-mannose. D-Mannose uptake was inhibited by D-mannose > D-glucose>phlorizin, whereas for alpha-methyl glucopyranoside the order was D-glucose=phlorizin > D-mannose. The initial rate of D-mannose uptake increased as the extravesicular Na(+) concentration increased, with a Hill coefficient of 1, suggesting that the Na(+):D-mannose cotransport stoichiometry is 1:1. It is concluded that both rat intestinal and renal apical membrane have a concentrative, saturable, electrogenic and Na(+)-dependent D-mannose transport mechanism, which is different from SGLT1.  相似文献   

15.
Abstract A partially purified Escherichia coli heat-stable (ST) enterotoxin had been shown to increase the 45Ca2+ uptake by rat intestinal brush-border membrane vesicles (BBMV). The effect of ST enterotoxin on calcium uptake by BBMV was significant compared with the control and was also dose-dependent. The stimulation of calcium uptake by ST enterotoxin was inhibited by chemical agents which block the calcium entry into the cell. These data indicate that the ST acts as calcium ionophore in this particular system.  相似文献   

16.
Renal tubular transport of delta-aminolevulinic acid in rat   总被引:1,自引:0,他引:1  
delta-Aminolevulinic acid (ALA) interferes with cell membrane and metabolic functions in a variety of tissues. To determine if ALA interacts with renal tubular transport functions, we examined concentrative transport of this heme precursor in rat kidneys. ALA was accumulated against a concentration gradient in rat renal cortical slices. Section freeze-dry autoradiography demonstrated selective accumulation in cells of proximal tubules. Concentrative uptake of ALA was inhibited by KCN, probenecid and p-aminohippurate (PAH). ALA inhibited slice uptake of PAH but failed to block slice accumulation of galactose, cycloleucine, lysine, glycine, proline, or alpha-aminoisobutyric acid and did not alter O2 utilization. Massive intraperitoneal injection of ALA did not increase 24 hr fractional excretion of amino acids in vivo. Concentrative transport of ALA in proximal tubules does not lead to generalized renal tubular transport defects but ALA appears to share the organic acid secretory system in rat kidney.  相似文献   

17.
C6 glioma cells contain two types of receptors for adrenocorticoids. Glucocorticoid (Type II) receptors are present at higher density and mediate increases in glycerol phosphate dehydrogenase and glutamine synthetase activity. The function of mineralocorticoid (Type I) receptors present at low density in C6 cells is unknown. Since mineralocorticoid (Type I) receptors in renal epithelial cells regulate cation transport, we sought to determine whether adrenocorticoid receptors located in glioma cells are similarly linked to electrolyte transporting activity. Occupation of mineralocorticoid receptors in C6 glioma by adrenocorticoids did not alter Na+ or K+ transport, in contrast to their effects on renal epithelial and vascular smooth muscle cells. Occupation of glucocorticoid receptors produced a 20-25% decrease in K+ uptake into C6 cells, but did not alter Na+ influx. Stimulation of Na+ influx with the ionophore monensin produced a large ouabain-sensitive increase in glucose utilization, as measured by 2-deoxyglucose uptake. However, mineralocorticoid receptor occupation did not alter glucose utilization, providing further evidence that these receptors do not influence Na+ transport in C6 cells. These studies provide evidence that mineralocorticoid receptors in glioma cells do not regulate Na+ or K+ transport. Glial glucocorticoid receptors have an inhibitory effect on glial K+ influx, which may contribute to glucocorticoid hormone effects on brain excitability.  相似文献   

18.
The effects of phorbol esters and diacylglycerol on phosphate uptake in opossum kidney (OK) cells were investigated to assess the possible role of Ca2+-activated, phospholipid dependent protein kinase (protein kinase C) on renal phosphate handling. OK cells are widely used as a model of proximal renal tubular cells and are reported to possess a Na+-dependent phosphate transport system. Phorbol-12,13-dibutyrate (PDBu) inhibited phosphate uptake. This inhibitory effect was synergistically enhanced with A23187. 4 beta-phorbol 12,13-didecanoate inhibited phosphate uptake, while 4 alpha-phorbol 12,13-didecanoate did not. 1-oleoyl-2-acetyl-glycerol (OAG), a synthetic diacylglycerol, also exhibited an inhibitory effect on phosphate uptake. These data suggest the possible involvement of protein kinase C in proximal renal tubular phosphate transport.  相似文献   

19.
Effects of harmaline and ouabain on intestinal transport in vitro of D-glucose in the pigeon are investigated. Harmaline inhibits glucose influx and affects intestinal Na+-K+-ATPase activity though the substrate uptake is more sensitive than the enzyme activity. Low concentration of harmaline while drastically inhibiting glucose uptake, does not affect intracellular concentration of Na+ and K+. In contrast, ouabain, though has no significant effect on glucose uptake, alters substantially the ionic balance of cells. Harmaline also affects that component of nutrient influx which is left unaffected by ouabain. Mucosal-serosal flux of glucose is reduced by harmaline when it is present only on the mucosal side of everted intestinal sacs. On the contrary, similar effect is produced by ouabain when it is placed only on the serosal side. It appears that harmaline possibly inhibits glucose transport in the pigeon intestine by two ways: first, by irreversible binding Na+-K+-ATPase - a feature shared by ouabain, and second, by reversible binding Na+-binding sites of enterocyte membrane - an effect not shared by ouabain.  相似文献   

20.
The carnitine transporter OCTN2 is responsible for the renal reabsorption of filtered L-carnitine. However, there is controversy regarding the intestinal L-carnitine transport mechanism(s). In this study, the characteristics of L-carnitine transport in both, isolated chicken enterocytes and brush-border membrane vesicles (BBMV) were studied. In situ hybridization was also performed in chicken small intestine. Chicken enterocytes maintain a steady-state L-carnitine gradient of 5 to 1 and 90% of the transported L-carnitine remains in a readily diffusive form. After 5 min, L-Carnitine uptake into BBMV overshot the equilibrium value by a factor of 2.5. Concentrative L-carnitine transport is Na+-, membrane voltage-and pH-dependent, has a high affinity for L-carnitine (Km 26 - 31 microM ) and a 1:1 Na+: L-carnitine stoichiometry. L-Carnitine uptake into either enterocytes or BBMV was inhibited by excess amount of cold L-carnitine > D-carnitine = acetyl-L-carnitine = gamma-butyrobetaine > palmitoyl-L-carnitine > betaine > TEA, whereas alanine, histidine, GABA or choline were without significant effect. In situ hybridization studies revealed that only the cells lining the intestinal villus expressed OCTN2 mRNA. This is the first demonstration of the operation of a Na+/L-carnitine cotransport system in the apical membrane of enterocytes. This transporter has properties similar to those of OCTN2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号