首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. In this work, we used a new mixture of selected sourdough lactobacilli and fungal proteases to eliminate the toxicity of wheat flour during long-time fermentation. Immunological (R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay [ELISA] and R5 antibody-based Western blot), two-dimensional electrophoresis, and mass spectrometry (matrix-assisted laser desorption ionization-time of flight, strong-cation-exchange-liquid chromatography/capillary liquid chromatography-electrospray ionization-quadrupole-time of flight [SCX-LC/CapLC-ESI-Q-TOF], and high-pressure liquid chromatography-electrospray ionization-ion trap mass spectrometry) analyses were used to determine the gluten concentration. Assays based on the proliferation of peripheral blood mononuclear cells (PBMCs) and gamma interferon production by PBMCs and intestinal T-cell lines (iTCLs) from 12 celiac disease patients were used to determine the protein toxicity of the pepsin-trypsin digests from fermented wheat dough (sourdough). As determined by R5-based sandwich and competitive ELISAs, the residual concentration of gluten in sourdough was 12 ppm. Albumins, globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. Low-molecular-weight epitopes were not detectable by SCX-LC/CapLC-ESI-Q-TOF mass spectrometry and R5-based Western blot analyses. The kinetics of the hydrolysis of the 33-mer by lactobacilli were highly efficient. All proteins extracted from sourdough activated PBMCs and induced gamma interferon production at levels comparable to the negative control. None of the iTCLs demonstrated immunoreactivity towards pepsin-trypsin digests. Bread making was standardized to show the suitability of the detoxified wheat flour. Food processing by selected sourdough lactobacilli and fungal proteases may be considered an efficient approach to eliminate gluten toxicity.  相似文献   

2.
This work was aimed at producing a sourdough bread that is tolerated by celiac sprue (CS) patients. Selected sourdough lactobacilli had specialized peptidases capable of hydrolyzing Pro-rich peptides, including the 33-mer peptide, the most potent inducer of gut-derived human T-cell lines in CS patients. This epitope, the most important in CS, was hydrolyzed completely after treatment with cells and their cytoplasmic extracts (CE). A sourdough made from a mixture of wheat (30%) and nontoxic oat, millet, and buckwheat flours was started with lactobacilli. After 24 h of fermentation, wheat gliadins and low-molecular-mass, alcohol-soluble polypeptides were hydrolyzed almost totally. Proteins were extracted from sourdough and used to produce a peptic-tryptic digest for in vitro agglutination tests on K 562(S) subclone cells of human origin. The minimal agglutinating activity was ca. 250 times higher than that of doughs chemically acidified or started with baker's yeast. Two types of bread, containing ca. 2 g of gluten, were produced with baker's yeast or lactobacilli and CE and used for an in vivo double-blind acute challenge of CS patients. Thirteen of the 17 patients showed a marked alteration of intestinal permeability after ingestion of baker's yeast bread. When fed the sourdough bread, the same 13 patients had values for excreted rhamnose and lactulose that did not differ significantly from the baseline values. The other 4 of the 17 CS patients did not respond to gluten after ingesting the baker's yeast or sourdough bread. These results showed that a bread biotechnology that uses selected lactobacilli, nontoxic flours, and a long fermentation time is a novel tool for decreasing the level of gluten intolerance in humans.  相似文献   

3.
This work was aimed at producing a sourdough bread that is tolerated by celiac sprue (CS) patients. Selected sourdough lactobacilli had specialized peptidases capable of hydrolyzing Pro-rich peptides, including the 33-mer peptide, the most potent inducer of gut-derived human T-cell lines in CS patients. This epitope, the most important in CS, was hydrolyzed completely after treatment with cells and their cytoplasmic extracts (CE). A sourdough made from a mixture of wheat (30%) and nontoxic oat, millet, and buckwheat flours was started with lactobacilli. After 24 h of fermentation, wheat gliadins and low-molecular-mass, alcohol-soluble polypeptides were hydrolyzed almost totally. Proteins were extracted from sourdough and used to produce a peptic-tryptic digest for in vitro agglutination tests on K 562(S) subclone cells of human origin. The minimal agglutinating activity was ca. 250 times higher than that of doughs chemically acidified or started with baker's yeast. Two types of bread, containing ca. 2 g of gluten, were produced with baker's yeast or lactobacilli and CE and used for an in vivo double-blind acute challenge of CS patients. Thirteen of the 17 patients showed a marked alteration of intestinal permeability after ingestion of baker's yeast bread. When fed the sourdough bread, the same 13 patients had values for excreted rhamnose and lactulose that did not differ significantly from the baseline values. The other 4 of the 17 CS patients did not respond to gluten after ingesting the baker's yeast or sourdough bread. These results showed that a bread biotechnology that uses selected lactobacilli, nontoxic flours, and a long fermentation time is a novel tool for decreasing the level of gluten intolerance in humans.  相似文献   

4.
Quinoa fermentation by lactic acid bacteria (LAB) is an interesting alternative to produce new bakery products with high nutritional value; furthermore, they are suitable for celiac patients because this pseudo-cereal contains no gluten. Growth and lactic acid production during slurry fermentations by Lactobacillus plantarum CRL 778 were greater in quinoa (9.8 log?cfu/mL, 23.1 g/L) than in wheat (8.9 log?cfu/mL, 13.9 g/L). Lactic fermentation indirectly stimulated flour protein hydrolysis by endogenous proteases of both slurries. However, quinoa protein hydrolysis was faster, reaching 40–100 % at 8 h of incubation, while wheat protein hydrolysis was only 0–20 %. In addition, higher amounts of peptides (24) and free amino acids (5 g/L) were determined in quinoa compared to wheat. Consequently, greater concentrations (approx. 2.6-fold) of the antifungal compounds (phenyllactic and hydroxyphenyllactic acids) were synthesized from Phe and Tyr in quinoa by L. plantarum CRL 778, an antifungal strain. These promising results suggest that this LAB strain could be used in the formulation of quinoa sourdough to obtain baked goods with improved nutritional quality and shelf life, suitable for celiac patients.  相似文献   

5.
Celiac disease (CD) is an immune-mediated disease, triggered in genetically susceptible individuals by ingesting gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the estimated prevalence of CD is around 1 % of the population in the western world and medical nutritional therapy (MNT) is the only accepted treatment for celiac disease. To date, the replacement of gluten in bread presents a significant technological challenge for the cereal scientist due to the low baking performance of gluten free products (GF). The increasing demand by the consumer for high quality gluten-free (GF) bread, clean labels and natural products is rising. Sourdough has been used since ancient times for the production of rye and wheat bread, its universal usage can be attributed to the improved quality, nutritional properties and shelf life of sourdough based breads. Consequently, the exploitation of sourdough for the production of GF breads appears tempting. This review will highlight how sourdough LAB can be an efficient cell factory for delivering functional biomolecules and food ingredients to enhance the quality of gluten free bread.  相似文献   

6.
Aims:  This work aimed at using a pool of selected enterococci and fungal proteases to hydrolyse wheat gluten during long-time fermentation.
Methods and Results:  A liquid dough made with wheat flour (20% w/w) was fermented with three Enterococcus strains (dough A) or with the combination of enterococci and Rhizopus oryzae proteases (dough B). After 48 h of fermentation, dough A and B had a concentration of water-soluble peptides approximately threefold higher than the chemically acidified dough (CAD), used as the control. The same was found for the concentration of free amino acids, being higher in dough B with respect to dough A. SDS-PAGE analysis showed that albumin and glutenin fractions were partially hydrolysed, while gliadins almost disappeared in dough A and B, as confirmed by two-dimensional electrophoresis, RP-HPLC and R5-ELISA analyses.
Conclusions:  The combined use of enterococci and fungal proteases showed a decrease of the gluten concentration of more than 98% during long-time fermentation.
Significance and Impact of the Study:  The use of the mixture of selected enterococci and R. oryzae proteases should be considered as a potential tool to decrease gluten concentration in foods.  相似文献   

7.
Owing to its extensive use in the human diet, wheat is among the most common causes of food-related allergies and intolerances. Allergies to wheat are provoked by ingestion, inhalation or contact with either the soluble or the insoluble gluten proteins in wheat. Gluten proteins, and particularly the gliadin fraction, are also the main factor triggering celiac disease, a common enteropathy induced by ingestion of wheat gluten proteins and related prolamins from oat, rye and barley in genetically susceptible individuals. The role of gliadin and of its derived peptides in eliciting the adverse reactions in celiac disease are still far from being completely explained. Owing to its unique pathogenesis, celiac disease is widely investigated as a model immunogenetic disorder. The structural characterization of the injuring agents, the gluten proteins, assumes a particular significance in order to deepen the understanding of the events that trigger this and similar diseases at the molecular level. Recent developments in proteomics have provided an important contribution to the understanding of several basic aspects of wheat protein-related diseases. These include: the identification of gluten fractions and derived peptides involved in wheat allergy and intolerance, including celiac disease, and the elucidation of their mechanism of toxicity; the development and validation of sensitive and specific methods for detecting trace amounts of gluten proteins in gluten-free foods for intolerant patients; and the formulation of completely new substitute foods and ingredients to replace the gluten-based ones. In this article, the main aspects of current and prospective applications of mass spectrometry and proteomic technologies to the structural characterization of gluten proteins and derived peptides are critically presented, with a focus on issues related to their detection, identification and quantification, which are relevant to the biochemical, immunological and toxicological aspects of wheat intolerance.  相似文献   

8.
Owing to its extensive use in the human diet, wheat is among the most common causes of food-related allergies and intolerances. Allergies to wheat are provoked by ingestion, inhalation or contact with either the soluble or the insoluble gluten proteins in wheat. Gluten proteins, and particularly the gliadin fraction, are also the main factor triggering celiac disease, a common enteropathy induced by ingestion of wheat gluten proteins and related prolamins from oat, rye and barley in genetically susceptible individuals. The role of gliadin and of its derived peptides in eliciting the adverse reactions in celiac disease are still far from being completely explained. Owing to its unique pathogenesis, celiac disease is widely investigated as a model immunogenetic disorder. The structural characterization of the injuring agents, the gluten proteins, assumes a particular significance in order to deepen the understanding of the events that trigger this and similar diseases at the molecular level. Recent developments in proteomics have provided an important contribution to the understanding of several basic aspects of wheat protein-related diseases. These include: the identification of gluten fractions and derived peptides involved in wheat allergy and intolerance, including celiac disease, and the elucidation of their mechanism of toxicity; the development and validation of sensitive and specific methods for detecting trace amounts of gluten proteins in gluten-free foods for intolerant patients; and the formulation of completely new substitute foods and ingredients to replace the gluten-based ones. In this article, the main aspects of current and prospective applications of mass spectrometry and proteomic technologies to the structural characterization of gluten proteins and derived peptides are critically presented, with a focus on issues related to their detection, identification and quantification, which are relevant to the biochemical, immunological and toxicological aspects of wheat intolerance.  相似文献   

9.

Background  

Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences.  相似文献   

10.
The native structure and distribution of gliadin epitopes responsible for Celiac Sprue (CS) may be influenced by cereal food processing. This work was aimed at showing the capacity of probiotic VSL#3 to decrease the toxicity of wheat flour during long-time fermentation. VSL#3 (109 cfu/ml) hydrolyzed completely the α2-gliadin-derived epitopes 62–75 and 33-mer (750 ppm). Two-dimensional electrophoresis, immunological (R5 antibody) and mass spectrometry analyses showed an almost complete degradation of gliadins during long-time fermentation of wheat flour by VSL#3. Gliadins non-hydrolyzed during fermentation by VSL#3 were subjected to peptic-tryptic (PT) digestion and analyzed by CapLC-ESI-Q-ToF-MS (Capillary Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry). Search for several epitopes showed the only presence of α2-gliadin-fragment 62–75 at a very low concentration (sub-ppm range). Compared to IEC-6 cells exposed to intact gliadins extracted from the chemically acidified dough (control), VSL#3 pre-digested gliadins caused a less pronounced reorganization of the intracellular F-actin which was mirrored by an attenuated effect on intestinal mucosa permeability. The release of zonulin from intestinal epithelial cells treated with gliadins was considerably lower when digested with VSL#3. Agglutination test on K 562 (S) cells showed that the PT-digest of wheat flour treated with VSL#3 increased the Minimal Agglutinating Activity of ca. 100 times. Wheat proteins were extracted from doughs and subjected to PT digestion. Compared to PT-digest from chemically acidified dough, celiac jejunal biopsies exposed to the PT-digest from the dough fermented by VSL#3 did not show an increase of the infiltration of CD3+ intraepithelial lymphocytes. Proteolytic activity by probiotic VSL#3 may have an importance during food processing to produce pre-digested and tolerated gliadins for increasing the palatability of gluten-free products.  相似文献   

11.
Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients.  相似文献   

12.
Acetic-acid-soluble storage proteins from gluten of the bread wheat cv. Sprint 3 were fractionated by adsorption chromatography on 2000 Å controlled-pore glass (CPG) beads, and glutenin polymers with molecular mass higher than 107 Da and free from monomeric gliadins were recovered. The glutenin polymers were found to consist of high-molecular-weight (HMW) and low-molecular-weight (LMW) glutenin subunits. Peptic-tryptic (PT) digests of glutenins were examined for their agglutination activity on human myelogenous leukemia K 562(S) cells, agglutination being strongly correlated with toxicity for the celiac intestine. The peptide fraction at a concentration of 1 g/L of culture medium was able to agglutinate 30% of K 562(S) cells, suggesting a moderate toxic effect. This toxicity may be accounted for by homologies in amino acid sequences between glutenin subunits and α/β-and γ-gliadins. © 1997 John Wiley & Sons, Inc.  相似文献   

13.

Background and Aims

Celiac sprue is a life-long disease characterized by an intestinal inflammatory response to dietary gluten. A gluten-free diet is an effective treatment for most patients, but accidental ingestion of gluten is common, leading to incomplete recovery or relapse. Food-grade proteases capable of detoxifying moderate quantities of dietary gluten could mitigate this problem.

Methods

We evaluated the gluten detoxification properties of two food-grade enzymes, aspergillopepsin (ASP) from Aspergillus niger and dipeptidyl peptidase IV (DPPIV) from Aspergillus oryzae. The ability of each enzyme to hydrolyze gluten was tested against synthetic gluten peptides, a recombinant gluten protein, and simulated gastric digests of whole gluten and whole-wheat bread. Reaction products were analyzed by mass spectrometry, HPLC, ELISA with a monoclonal antibody that recognizes an immunodominant gluten epitope, and a T cell proliferation assay.

Results

ASP markedly enhanced gluten digestion relative to pepsin, and cleaved recombinant α2-gliadin at multiple sites in a non-specific manner. When used alone, neither ASP nor DPPIV efficiently cleaved synthetic immunotoxic gluten peptides. This lack of specificity for gluten was especially evident in the presence of casein, a competing dietary protein. However, supplementation of ASP with DPPIV enabled detoxification of moderate amounts of gluten in the presence of excess casein and in whole-wheat bread. ASP was also effective at enhancing the gluten-detoxifying efficacy of cysteine endoprotease EP-B2 under simulated gastric conditions.

Conclusions

Clinical studies are warranted to evaluate whether a fixed dose ratio combination of ASP and DPPIV can provide near-term relief for celiac patients suffering from inadvertent gluten exposure. Due to its markedly greater hydrolytic activity against gluten than endogenous pepsin, food-grade ASP may also augment the activity of therapeutically relevant doses of glutenases such as EP-B2 and certain prolyl endopeptidases.  相似文献   

14.
Henry Ng 《Applied microbiology》1972,23(6):1153-1159
Previous workers from this laboratory observed considerable variation in the proportions of acetic and lactic acids produced in pure broth culture as compared to consistently high proportions of acetic acid produced in the sourdough and flour suspension systems. In the latter the proportion of acetic acid was always in the range of 20 to 35% of the total, whereas in pure broth culture frequently less than 5% acetic acid was produced. In the natural environment, the sourdough bacteria, tentatively identified as lactobacilli, coexist with a yeast, Saccharomyces exiguus, and this study was undertaken to determine whether this yeast or flour ingredients including glucose or other factors were involved in this variable production of acetic acid. The proportion of acetic acid produced in broth culture on maltose, the preferred carbohydrate source, was found to depend almost entirely on the degree of aeration. Essentially anaerobic conditions, as obtained by thorough evacuation and flushing with CO(2) or N(2), resulted in very low (5% or less) proportions of acetic acid. Aerobic conditions, achieved by continuous shaking in cotton-plugged flasks, yielded high levels (23 to 39% of the total) of acetic acid. Similar effects of aeration were observed with glucose as the substrate, although growth was considerably slower, or in nonsterile flour suspension systems. It is theorized that, under aerobic conditions, the reduced pyridine nucleotides generated in the dissimilation of carbohydrate are oxidized directly by molecular oxygen, thereby becoming unavailable for the reduction of the acetyl phosphate intermediate to ethyl alcohol, the usual product of anaerobic dissimilation of glucose by heterofermentative lactic acid bacteria. Comparative studies with known strains of homo- and heterofermentative lactobacilli showed similar effects of aeration only on the heterofermentative strains, lending additional support to the tentative grouping by previous workers from this laboratory of the sourdough bacteria with the heterofermentative lactobacilli.  相似文献   

15.
Summary Proteolytic activity during the fermentation of sourdough results in an increase in amino acid content. The proteolysis is caused by flour enzymes, microbial enzymes of flour and by sourdough bacteria. The results indicate that the lactic acid bacteria of sourdough are important for proteolytic activity during the fermentation of sourdough. This proteolytic activity depends on the species of bacteria. Homo- and heterofermentative sourdough bacteria effect different amino acid spectra. Qualitative and quantitative differences in sulphur-containing, cyclic and hydroxy amino acids have been observed. The proteolytic process can be influenced by fermentation conditions, especially the temperature. A lesser effect is observed in the dough yield (flour-water relationship). From experiments with different strains and species of lactic acid bacteria, it is concluded that only one third of the proteolytic activity in sourdough is based on proteases from the flour.Publication-No. 5592 of Federal Research Centre for Cereal and Potato Processing, Detmold, Federal Republic of GermanyPaper presented at the Third International Conference Rye and Triticale, Poznan, Poland, 13–14 May 1987  相似文献   

16.
The presence in wheat flour of several kinds of proteases was shown on the basis of pH-activity profile, substrate specificity, and response to inhibitors. Among them, 14C-hemoglobin and cbz-Phe-Ala hydrolases (14C-Hbase and CPAase) showed optimal activity around pH 4. 14C-Hbase was inhibited almost completely by pepstatin, and CPAase was partially inhibited by DFP. About 85% of 14C-Hbase activity and 40% of CPAase activity in the original flour were retained in gluten fraction. The decrease in viscosity of the gluten solution in dilute acetic acid was effectively prevented by pepstatin. An SDS-PAGE pattern showed that hydrolysis of gluten proteins was prevented effectively by pepstatin, although not completely, and that the simultaneous addition of pepstatin and DFP prevented completely self-digestion of the gluten proteins. Therefore, pepstatin and DFP sensitive proteases were shown to be responsible for the self-digestion of gluten proteins. The mode of action of these enzymes was relatively specific for the second highest molecular weight subunit of glutenin and for some other proteins.  相似文献   

17.
In the last few years the need to produce food with added value has fueled the search for new ingredients and health-promoting compounds. In particular, to improve the quality of bakery products with distinct nutritional properties, the identification of new raw materials, appropriate technologies, and specific microbial strains is necessary. In this study, different doughs were prepared, with 10% and 20% flour from immature wheat grain blended with type “0 America” wheat flour. Immature flour was obtained from durum wheat grains harvested 1 to 2 weeks after anthesis. Doughs were obtained by both the straight-dough and sourdough processes. Two selected exopolysaccharide-producing strains of lactic acid bacteria (LAB), Leuconostoc lactis A95 and Lactobacillus curvatus 69B2, were used as starters. Immature flour contained 2.21 g/100 g (dry weight) of fructo-oligosaccharides. Twenty percent immature flour in dough resulted in a shorter leavening time (4.23 ± 0.03 h) than with the control and dough with 10% immature flour. The total titratable acidity of sourdough with 20% immature flour was higher (12.75 ± 0.15 ml 0.1 N NaOH) than in the control and sourdough with 10% immature wheat flour (9.20 ml 0.1 N NaOH). Molecular analysis showed that all samples contained three LAB species identified as L. lactis, L. curvatus, and Pediococcus acidilactici. A larger amount of exopolysaccharide was found in sourdough obtained with 20% immature flour (5.33 ± 0.032 g/kg), positively influencing the exopolysaccharide content of the bread prepared by the sourdough process (1.70 ± 0.03 g/kg). The addition of 20% immature flour also led to a greater presence of fructo-oligosaccharides in the bread (900 mg/100 g dry weight), which improved its nutritional characteristics. While bread volume decreased as the concentration of immature wheat flour increased, its mechanical characteristics (stress at a strain of 30%) were the same in all samples obtained with different percentages of fructo-oligosaccharides. These data support the use of immature wheat grain flour, and exopolysaccaride-producing lactic acid bacteria in formulating functional prebiotic baked goods whose nutritional value can be suitably improved.  相似文献   

18.
The native structure and distribution of gliadin epitopes responsible for Celiac Sprue (CS) may be influenced by cereal food processing. This work was aimed at showing the capacity of probiotic VSL#3 to decrease the toxicity of wheat flour during long-time fermentation. VSL#3 (10(9) cfu/ml) hydrolyzed completely the alpha2-gliadin-derived epitopes 62-75 and 33-mer (750 ppm). Two-dimensional electrophoresis, immunological (R5 antibody) and mass spectrometry analyses showed an almost complete degradation of gliadins during long-time fermentation of wheat flour by VSL#3. Gliadins non-hydrolyzed during fermentation by VSL#3 were subjected to peptic-tryptic (PT) digestion and analyzed by CapLC-ESI-Q-ToF-MS (Capillary Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry). Search for several epitopes showed the only presence of alpha2-gliadin-fragment 62-75 at a very low concentration (sub-ppm range). Compared to IEC-6 cells exposed to intact gliadins extracted from the chemically acidified dough (control), VSL#3 pre-digested gliadins caused a less pronounced reorganization of the intracellular F-actin which was mirrored by an attenuated effect on intestinal mucosa permeability. The release of zonulin from intestinal epithelial cells treated with gliadins was considerably lower when digested with VSL#3. Agglutination test on K 562 (S) cells showed that the PT-digest of wheat flour treated with VSL#3 increased the Minimal Agglutinating Activity of ca. 100 times. Wheat proteins were extracted from doughs and subjected to PT digestion. Compared to PT-digest from chemically acidified dough, celiac jejunal biopsies exposed to the PT-digest from the dough fermented by VSL#3 did not show an increase of the infiltration of CD3(+) intraepithelial lymphocytes. Proteolytic activity by probiotic VSL#3 may have an importance during food processing to produce pre-digested and tolerated gliadins for increasing the palatability of gluten-free products.  相似文献   

19.
One of the diagnostic hallmarks of the histological lesions associated with celiac disease is the extensive infiltration of the small intestinal epithelium by CD8(+) T cells of unknown Ag specificity. In this study, we report recognition of the gliadin-derived peptide (A-gliadin 123-132) by CD8(+) T lymphocytes from celiac patients. A-gliadin 123-132-specific IFN-gamma production and cytotoxic activity were detected in PBMCs derived from patients on gluten-free diet, but not from either celiac patients on gluten-containing diet or healthy controls. In contrast, A-gliadin 123-132-specific cells were isolated from small intestine biopsies of patients on either gluten-free or gluten-containing diets. Short-term T cell lines derived from the small intestinal mucosa and specific for the 123-132 epitope recognized human APC pulsed with either whole recombinant alpha-gliadin or a partial pepsin-trypsin gliadin digest. Finally, we speculate on a possible mechanism leading to processing and presentation of class I-restricted gliadin-derived epitopes in celiac disease patients.  相似文献   

20.
We have used precipitin tests to detect antibodies to 10 dietary proteins in the serum (71 cases) and intestinal secretions (51 cases) of a group of children. Thirty-three of the patients had untreated coeliac disease. Our aims were to find out if, in coeliac patients, there was intestinal secretion of antibodies to wheat proteins only or if, as in coeliac serum, antibodies to many food proteins were present; and to confirm that secretion of antibodies to wheat or gluten was specific for coeliac disease.Precipitins to one or more dietary antigens were detected in the intestinal secretions of 26 out of 30 coeliacs and of 11 out of 21 children who did not have coeliac disease. Most of the positive reactions were with the antigens wheat flour, gluten, oatmeal, and egg. Though precipitins to wheat flour or gluten were present in the intestinal secretions of 22 out of 30 coeliacs this was not specific for coeliac disease for these precipitins were also present in 8 out of 21 non-coeliac children.Serum precipitins were detected in 27 out of 33 coeliacs (to the antigens wheat flour, gluten, oatmeal, rice flour, milk, bovine calf serum, sheep serum, and egg) and in 5 out of 33 non-coeliacs (mainly to milk and calf serum, but two infants aged 3 and 5 months had precipitins to several antigens).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号