首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

2.
The synthesis of the β-crystallin polypeptides has been studied in different regions of the embryonic chicken lens. Seven β-crystallin polypeptides ranging in molecular weight from approximately 19,000 (19K) to 35,000 (35K) daltons were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Each polypeptide was synthesized in a rabbit reticulocyte cell-free system supplemented with RNA from the embryonic lens fiber cells suggesting that each is encoded by a separate mRNA. Analysis of the cell-free translation products of the RNAs from 6-, 15-, and 19-day-old embryonic chicken lens fibers demonstrated that all seven polypeptides are translated at each of the stages and that the proportion of β-crystallin mRNAs increases as the chicken embryo matures. Fingerprints of methionine-containing tryptic peptides indicated that the three predominant β-crystallin polypeptides synthesized in the reticulocyte lysate (20K, 26K, and 35K) have related but distinct primary structures. Surprisingly, both the 35K β-crystallin polypeptide and its mRNA were selectively absent from the cells in the central region of the epithelium. Synthesis of this polypeptide from extracted RNAs was detected in the elongating cells of the equatorial region of the epithelium and from the fiber cells. In contrast to the 35K polypeptide, the six lower-molecular-weight β-crystallin polypeptides were synthesized in a reticulocyte lysate directed by RNAs extracted from all three regions of the lens. These data indicate that lens cell elongation and fiber cell differentiation in the embryonic chicken are accompanied by the appearance of the mRNA for the 35K polypeptide.  相似文献   

3.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

4.
Submandibular glands of male mice contain at least four abundant mRNAs that occur at low concentrations in glands of females. The male-specific mRNAs code for polypeptides of 48,000, 43,000, 29,000, and 27,000 MW. Androgenic regulation of these mRNAs is illustrated by their apparent absence in glands of castrate males and by their accumulation in glands of females treated with testosterone. Selective hybrid-arrested translation experiments also indicate reduced levels of these male-specific sequences in female gland cytoplasm. The 48,000 MW male-specific polypeptide is reduced in translation products directed by gland mRNA from C57BL10/J mice (variants deficient in salivary renin), suggesting the corresponding mRNA codes for a renin precursor. The identity of this polypeptide is confirmed by immune selection with renin-specific antibody.  相似文献   

5.
We have purified the seven virus-specific RNAs which were previously shown to be induced in Sac(-) cells upon infection with mouse hepatitis virus strain A59 (W. J. M. Spaan, P. J. M. Rottier, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 108:424-434, 1981). The individual RNAs, prepared by agarose gel electrophoresis of the polyadenylated RNA fraction from infected cells, were obtained pure, except for the preparations of RNAs 4, 5, and 6, which contained some contamination of RNA 7. The RNAs were microinjected into Xenopus laevis oocytes, and after incubation of these cells in the presence of [35S]methionine, the proteins synthesized were analyzed by polyacrylamide gel electrophoresis. Whereas no translation products of RNAs 1, 2, 4, and 5 were detected, the synthesis of virus-specific polypeptides coded by RNAs 3, 6, and 7 was observed. RNA 7 (0.6 X 10(6) daltons) directed the synthesis of a 54,000-molecular-weight polypeptide which comigrated with viral nucleocapsid protein and which was immunoprecipitated by antiserum from mice that had been infected with the virus. RNA 6 (0.9 X 10(6) daltons) directed the synthesis of three polypeptides with molecular weights of 24,000, 25,500, and 26,500, which migrated with the same electrophoretic mobilities as three low-molecular-weight virion polypeptides. After injection of RNA 3 (3.0 X 10(6) daltons), a polypeptide with a molecular weight of about 150,000 was immunoprecipitated. This polypeptide had no counterpart in the virion, but comigrated with a virus-specific glycoprotein present in infected cells which is immunoprecipitated by a rabbit antiserum against the mouse hepatitis virus strain A59 structural proteins. This antiserum could also immunoprecipitate the translation products of RNAs 3, 6, and 7. These results indicate that RNAs 3, 6, and 7 encode viral structural proteins. The significance of the data with respect to the strategy of coronavirus replication is discussed.  相似文献   

6.
The segmented double-stranded (ds) RNA genome of the simian rotavirus SA 11, after denaturation, can be translated in a cell-free protein synthesizing system. Of the 11 genome segments, 9 can be resolved on polyacrylamide gels and thus could be individually isolated and translated, providing a means of identifying the polypeptide encoded by each segment. On the basis of electrophoretic mobility of products in sodium dodecyl sulfate-polyacrylamide gels, the probable gene-coding assignments of dsRNA segments 1 to 6 were determined. RNA segments 1 to 4 code for polypeptides I1, I2, I3, and I4, respectively; segment 5 codes for a polypeptide very similar in mobility to a minor polypeptide present in SA 11-infected cells, O1A; and segment 6 codes for the major inner-capsid polypeptide I5.  相似文献   

7.
Solanum nodiflorum mottle virus RNA (Mr = 1.5 X 10(6)) was translated in vitro in a wheat embryo extract. Four major products were synthesized: 2 related proteins of molecular weight 100K (P100) and 67K (P67), a protein of molecular weight 38K (P38), and a methionine-lacking protein of molecular weight 28K (P28). P38 was synthesized by a minor RNA component (Mr approximately 0.4 X 10(6)) and comigrated with the only viral product detected in SNMV-infected N. clevelandii protoplasts. Antiserum raised against purified SNMV virions precipitated both in vitro- and in vivo-synthesized P38, suggesting that it is either a precursor to or an intact form of SNMV coat protein whose apparent molecular weight in purified virus preparations is 30K.  相似文献   

8.
9.
The DNA sequence of a clone from a cDNA library made from Xenopus laevis skin is described. This sequence represents the 3'-terminal end of an mRNA which codes for an epidermal cytokeratin polypeptide of mol. wt. 51 000 of the acidic (type I) subfamily as identified by hybridization-selection of mRNAs, followed by gel electrophoretic identification of the polypeptides synthesized by translation in vitro. The partial amino acid sequence of the amphibian cytokeratin shows strong similarity to type I cytoskeletal keratins from human (mol. wt. 50 000) and murine (mol. wt. 59 000) epidermis. In the non alpha-helical tail region the human and the non-mammalian (Xenopus) keratins are more similar to each other than to the murine protein, indicating that the former are equivalent cytokeratin polypeptides and belonging to a special subclass of type I keratin polypeptides devoid of glycine-rich regions in the carboxy-terminal portion. The evolutionary conservativity of the genes coding for cytokeratins is discussed.  相似文献   

10.
Analyses of bunyavirus-infected cell extracts identified at least two virus-induced nonstructural polypeptides. With snowshoe hare (SSH), La Crosse (LAC), and six SSH-LAC reassortant viruses, it was shown that one of these nonstructural polypeptides (NSs, approximate molecular weight, 7.4 X 10(3)) is coded by the SSH small (S)-size viral RNA species. This nonstructural polypeptide was not detected (at least in the same relative abundancies) in LAC virus-infected cells or in cells infected with reassortants having LAC S RNA. For SSH virus, tryptic peptide analyses of either [3H]leucine- or [3H]arginine-labeled NSs indicated that it contains unique sequences not present in the SSH nucleocapsid (N) polypeptide (also coded by the S RNA; J. R. Gentsch and D. H. L. Bishop, J. Virol. 28:417-419, 1978). Analyses of SSH virus-infected cell extracts and extracts of cells infected with SSH-LAC reassortants having SSH medium (M)-size RNA species indicated that a nonstructural polypeptide (NSM; approximate molecular weight, 12 X 10(3)) is coded by the SSH M RNA species. In extracts of LAC virus-infected cells (or cells infected with SSH-LAC reassortants having LAC M RNA), a polypeptide with an electrophoretic mobility slightly faster than that of the SSH NSM polypeptide was observed (approximate molecular weight, 11 X 10(3)); it has been designated LAC NSM. The relationships of the NSM polypeptides to the other M RNA-coded polypeptides (G1 and G2; J. R. Gentsch and D. H. L. Bishop, J. Virol. 30;767-770, 1979) have not been determined. Two additional polypeptides present in both LAC- and SSH-infected cell extracts also appear to be virus induced (one with an approximate molecular weight of 10 X 10(3), p10; the other with an approximate molecular weight of 18 X 10(3), p18). Whether these polypeptides are virus coded has not been determined.  相似文献   

11.
The genomic organization of the bottom-component RNA of cowpea mosaic virus was studied. In vivo, this RNA encodes at least eight different polypeptides of 170, 110, 87, 84, 60, 58, 32, and 4 kilodaltons (K), the last polypeptide representing the genome-bound protein VPg. In rabbit reticulocyte lysates, bottom-component RNA is translated into a 200K polypeptide which is then processed to give the 32 and 170K polypeptides also found in vivo. By pulse-labeling the 200K primary translation product, we now show that the 32 and 170K polypeptides are derived from the NH2-terminal and COOH-terminal parts of this polypeptide, respectively. Comparison of the proteolytic peptide patterns of 170K polypeptides synthesized in vitro and pulse-labeled at either the NH2-terminal or the COOH-terminal end with the patterns of the 170 and 110K polypeptides found in vivo demonstrates that the order within the 200K primary translation product of cowpea mosaic virus bottom-component RNA is as follows: NH2-32K polypeptide-58K polypeptide-VPg-24K polypeptide-87K polypeptide-COOH.  相似文献   

12.
Biochemical mapping of the simian rotavirus SA11 genome   总被引:24,自引:18,他引:6       下载免费PDF全文
  相似文献   

13.
The mRNA species encoded by early region 4 (E4) (map position [mp] 91.5 to 99.3) of adenovirus 2 were isolated from the polysomes of infected KB cells and were purified by hybridization to the cloned HindIII-F fragment (mp 89.5 to 97.3) or to EcoRI-C fragment (mp 89.7 to 100). The mRNA's were translated in vitro using [35S]methionine as a labeled precursor in rabbit reticulocyte lysates treated with micrococcal nuclease as well as in wheat germ lysates. Five major (35,000-molecular-weight [35K], 23K, 22K, 21K, 18K) polypeptides were observed when the reticulocyte lysate was used. The 23K, 22K, 21K, and 18K polypeptides were also observed with the wheat germ lysate, as well as a very prominent 11K polypeptide; the 35K polypeptide was not observed. Assignment of these polypeptides to E4 was further established by hybrid arrested translation. Two-dimensional gel electrophoresis of a wheat germ translate resolved five polypeptides ranging from 18K to 23K, the major 11K polypeptide, and polypeptides of 10K and 9K. The in vitro 23K to 18K and 11K polypeptides migrated to approximately the same positions on two-dimensional gels as did seven 26K to 21K polypeptides and an 11K polypeptide synthesized in vivo (Brackmann et al., J. Biol. Chem, 255:6772--6779, 1980). Two-dimensional tryptic peptide maps demonstrated that the 35K, 23K, 22K, 21K, and 18K polypeptides are related. The peptide map of 11K is different from those of the above polypeptides, although 11K may share one tryptic methionine polypeptide with them. These results indicate that E4 encodes a major 11K polypeptide, as well as major 35K, 23K, 22K, 21K, and 18K polypeptides.  相似文献   

14.
J R Cutt  T Shenk    P Hearing 《Journal of virology》1987,61(2):543-552
Peptide-specific antisera were developed to analyze the products encoded by adenovirus type 5 early region 4 (E4) open reading frames 6 and 7. Reading frame 6 previously was shown to encode a 34-kilodalton polypeptide (34K polypeptide) that forms a complex with the early region 1B (E1B)-55K antigen and is required for efficient viral growth in lytic infection. Antisera that were generated recognized the E4-34K protein as well as a family of related polypeptides generated by the fusion of open reading frames 6 and 7. These polypeptides shared amino-terminal sequences with the 34K protein. Short-pulse analysis suggested that the heterogeneity observed with the 6/7 fusion products resulted from differential splicing patterns of related E4 mRNAs. An antiserum directed against the amino terminus of reading frame 6 recognized only the free form of the 34K antigen that was not associated with the E1B-55K protein. This observation allowed the determination of the stability of the free and complexed form of this polypeptide. Pulse-chase analyses demonstrated that both forms of the 34K protein had half-lives greater than 24 h, suggesting that complex formation did not result in stabilization of this gene product. The half-lives of the 6/7 fusion products were approximately 4 h. The 34K protein also was shown to have a nuclear localization within infected cells. Finally, analysis of a mutant carrying deletions in both the E4-34K and E1B-55K polypeptides indicated that the complex formed between these two proteins was a functional unit in lytic infection.  相似文献   

15.
Translation of middle-component RNA of cowpea mosaic virus in vitro produced two polypeptides of 95 and 105 kilodaltons (95K and 105K, respectively) with overlapping amino acid sequences, which were specifically cleaved by a protease encoded by the bottom-component RNA. The proteolytic cleavage was studied by the addition of antibodies raised against various bottom-component RNA-encoded proteins to extracts prepared from bottom-component RNA-inoculated cowpea protoplasts. Since antiserum to the 32K polypeptide efficiently inhibited the proteolytic activity of such extracts, although antiserum to VPg or to the 170K polypeptide did not, evidence was obtained which indicates that the 32K polypeptide represents the protease involved. Fractionation of proteolytically active extract by glycerol gradient centrifugation demonstrated that 32K polypeptides do not exist as free proteins but are aggregated to the bottom-component RNA-encoded 170K, 84K, 60K, or 58K polypeptides. Maximal proteolytic activity was observed for 32K polypeptides associated with 170K polypeptides, suggesting that the activity was unstable and confined to newly synthesized molecules.  相似文献   

16.
Adenovirus type 2 mRNA was translated in S30 extracts from Ehrlich ascites and wheat embryo cells. The in vitro products were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera in the presence of urea. Seven virion polypeptides could be identified by immunoprecipitation. Three of these appear to be precursors to polypeptides of the virion. mRNA isolated late in adenovirus infection was separated into three size classes by zonal sedimentation. Material sedimenting at 26S was translated into polypeptides corresponding to the largest virion polypeptides II to IV, a 22S fraction corresponding to polypeptide V, and smaller polypeptides and a 15S fraction corresponding to polypeptide IX. A significant amount of polypeptide IX was also synthesized by the 26S and 22S RNA.  相似文献   

17.
Rabbit anti-human lactate dehydrogenase-5(M4) antisera were raised which cross-reacted with mouse lactate dehydrogenase M polypeptide. The antisera were used for identification of human and mouse LDH-M polypeptides synthesized using an in vitro system directed by the mRNAs. The in vitro translation products directed by both mRNAs were similar in size and immunologically identical to the authentic LDH-M polypeptides. The sizes of the mRNAs encoding for both human and mouse LDH-M polypeptides were similar, about 15S (1445 nucleotides) and were shorter than the corresponding rat mRNA which is about 18S (1765 nucleotides).  相似文献   

18.
Stress mRNA metabolism in canavanine-treated chicken embryo cells.   总被引:7,自引:3,他引:4       下载免费PDF全文
Four major chicken stress mRNAs with apparent molecular weights of 1.2 X 10(6), 0.88 X 10(6), 0.59 X 10(6), and 0.25 X 10(6) to 0.28 X 10(6) were separated on acidic agarose-urea gels. Using cell-free translation, the coding assignments of these mRNAs were determined to be stress proteins with apparent molecular weights of 88,000, 71,000, 35,000, and 23,000. Despite high levels of translational activity in vivo and in vitro, no newly synthesized mRNA for the 23-kilodalton stress protein was detected on gels under conditions which readily allowed detection of other stress mRNAs, suggesting activation of a stored or incompletely processed mRNA. Cloned Drosophila heat shock genes were used to identify and measure changes in cellular levels of the two largest stress mRNAs. Synthesis of these mRNAs increased rapidly during the first hour of canavanine treatment and continued at a high rate for at least 7 h, with the mRNAs attaining new steady-state levels by ca. 3 h. Both of these inducible stress mRNAs had very short half-lives compared with other animal cell mRNAs. Using an approach-to-steady-state analysis, the half-lives were calculated to be 89 min for the mRNA encoding the 88-kilodalton stress protein and 46 min for the mRNA encoding the 71-kilodalton stress protein. Chicken 18S and 28S rRNA synthesis was inhibited, and actin mRNA levels measured with cloned cDNA encoding chicken beta-actin slowly declined in canavanine-treated cells.  相似文献   

19.
Isolated desmosomes from bovine epidermis contain two major polypeptides of mol. wts. 75 000 (D6) and 83 000 (D5) which, like the desmoplakins of mol. wt. greater than 200 000, are associated with the insoluble desmosomal plaque structure. We have characterized these two polypeptides and examined their significance by peptide map comparisons and translation of bovine epidermal mRNA in vitro. Polypeptide D5 is different from polypeptide D6 by its apparent mol. wt., its isoelectric pH (approximately 6.35, whereas D6 is a basic polypeptide isoelectric at pH approximately 8.5) and its peptide map. By all these criteria desmosomal polypeptides D5 and D6 are also different from cytokeratins, desmoplakins and the glycosylated desmosomal proteins. Both polypeptides are synthesized from different mRNAs separable by gel electrophoresis on agarose: mRNA coding for polypeptide D5 is approximately 3500 nucleotides long, that for D6 is significantly shorter (estimated to 3050 nucleotides), and both contain relatively large proportions of non-coding sequences. The translational products of these mRNAs co-migrate, on two-dimensional gel electrophoresis, with the specific polypeptides from bovine epidermis, indicating that they are genuine polypeptides and are not the result of considerable post-translational processing or modification of precursor molecules. The cell and tissue distribution of these two cytoskeletal proteins and possible functions are discussed.  相似文献   

20.
A human type-C retrovirus, designated HTLV (human T-cell leukemia virus), was isolated from the HTLV producer cell line MT-2. Agarose gel electrophoresis analysis 32P-labeled HTLVMT-2 virion RNA revealed that HTLVMT-2 virion RNA consists mainly of 24S and small amounts of 35S and 32S RNAs. The 24S HTLVMT-2 virion RNA and unfractionated HTLVMT-2 virion RNA were translated in a rabbit reticulocyte lysate system in vitro. The predominant polypeptide synthesized from 24S RNA had an apparent mol. wt. of 28 000 (28 K); unfractionated HTLVMT-2 virion RNA directed the synthesis of 53 000 (53 K), 33 000 (33 K) and 28 000 (28 K) polypeptides as main components. Most of the polypeptides synthesised in vitro by translation of HTLVMT-2 virion RNAs possess the same sizes as the proteins formerly designated as ATLA (ATL-associated antigen) in SDS-polyacrylamide gel electrophoresis and immunologically precipitated with sera of ATL patients. Therefore, the antigens termed ATLA, found by the serological study of ATL, are HTLVMT-2 encoded polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号