首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study various C27 sterols with a 3-oxo-4-ene structure were incubated with adrenal cortex mitochondrial preparations. (22R)-22-Hydroxy-4-cholesten-3-one and (20R,22R)-20,22-dihydroxy-4-cholesten-3-one were found to be converted into progesterone. This suggests the existence of a pathway for adrenal progesterone formation analogous to the normal 3 beta-hydroxy-5-ene pathways. (20S)-20-Hydroxy-4-cholesten-3-one was hydroxylated at C25. 4-Cholesten-3-one, 25-hydroxy-4-cholesten-3-one and (22S)-22-hydroxy-4-cholesten-3-one were not converted to a measurable extent. With 3-oxo-4-ene C27 sterols as substrates, the cholesterol side-chain cleaving enzyme system seems to require the presence of a 22R-hydroxyl group in the substrate. The clinical relevance of these observations is discussed.  相似文献   

2.
Biotransformation of 3beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C(22) phenolic acid intermediates and complete removal of the C(17) side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C(17)-C(20) bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

3.
J. Pataki  E.V. Jensen 《Steroids》1976,28(4):437-447
Treatment of the unstable 3β-hydroxy-20, 20-dimethoxypregn-5-ene 3-acetate with acetic anhydride at reflux temperature gave a mixture of 3β-hydroxy-20-methoxypregna-5, 17(20)-diene and 3β-hydroxy-20-methoxypregna-5, 20-diene 3-acetates. Fluorination of this mixture with perchloryl fluoride afforded after fractionated crystallization 3β-hydroxy-17-fluoro-20-methoxypregna-5, 20-diene 3-acetate. Acid hydrolysis of the reaction mixture and subsequent Chromatographic separation led to 3β-hydroxy-17-fluoropregn-5-en-20-one 3-acetate and 3β-hydroxy-21-fluoropregn-5-en-20-one 3-acetate. 3β-Hydroxy-17-fluoro-20-methoxypregna-5, 20-diene 3-acetate did not react further with perchloryl fluoride even under forcing conditions. Fluorination of 3β-hydroxy-20-(N-ethyl benzylamino)-pregna-5, 17(20)-diene gave 3β-hydroxy-17, 21-difluoro-pregn-5-en-20-one, exclusively.  相似文献   

4.
19-Hydroxyaldosterone (20) and the 3 beta-hydroxy-5-ene analog of aldosterone (HAA) (8) were synthesized from 21-acetoxy-4-pregnene-3,20-dion-20-ethylene ketal-18, 11 beta-lactone (2) as follows: the double bond was transposed from the 4,5 to the 5,6-position by enol acetylation to 3, followed by sodium borohydride reduction. Further reduction of the resulting lactone 4a with diisobutylaluminum hydride (DIBAH) furnished the 20-ketal of HAA 6, from which free HAA (8) and the 18,21-anhydro compound 7 were obtained by acid treatment. The [1H]NMR spectrum of 8 in CDCl3 showed it to be a mixture of two isomeric forms. Correlation with the known aldosterone-gamma-etiolactone (10) was established by periodate oxidation of HAA to the corresponding etiolactone 9 followed by chromic acid oxidation. The preparation of 20 was next effected in the following manner: the diacetate 4b was converted into the 6 beta, 19-oxido compound 13b by addition of hypobromous acid followed by the hypoiodite reaction of the bromohydrin 11. Mild saponification of 13b lead to the corresponding diol 13a, and was followed by selective oxidation to the 3-one 14, readily dehydrobrominated to 15a. Reductive ring opening furnished a mixture of the 19,21-diol 16a and its 5-ene isomer 16b, which was directly converted to the diketal 17. Reduction with DIBAH gave the hemiacetal 18, and hydrolysis of the latter 19-hydroxyaldosterone (20) as a water-soluble solid, accompanied by the 18,21-anhydro compound 19. 19-Hydroxyaldosterone exists in CHCl3 and water as a mixture of mainly two isomers. Periodate oxidation furnished the etiolactone 21. Preliminary results indicate that HAA and 19-hydroxyaldosterone are active mineralocorticoids in the Kagawa bioassay and short-circuit current measurements.  相似文献   

5.
A convenient preparation of 2-methyl-5α-cholest-2-ene from 5α-cholestan-3β-ol is described.  相似文献   

6.
Epididymal nuclear 4-ene steroid 5 alpha-reductase catalyses the bisubstrate reaction between testosterone and NADPH to produce 5 alpha-dihydrotestosterone (DHT) and NADP+. Previous studies from this laboratory have demonstrated that the 4-ene steroid 5 alpha-reductase reaction proceeds through the direct transfer of protons from NADPH to testosterone, and that while the product DHT does not affect 4-ene steroid 5 alpha-reductase activity, NADP+ is a potent inhibitor of this enzyme. In the present studies we have investigated the mechanism of 4-ene steroid 5 alpha-reductase with respect to the binding of the substrates, testosterone and NADPH. Kinetic analyses revealed that testosterone does not alter the Kmapp for NADPH, and that NADPH does not alter the Kmapp for testosterone. These findings excluded the possibility that the mechanism of 4-ene steroid 5 alpha-reductase is of the ping-pong variety, and that the sequential addition of both substrates is required before any products are released. The lack of change in Kmapp, observed for either substrate, further suggests that both testosterone and NADPH are able to bind to the free enzyme, negating the possibility that substrate addition occurs in an ordered manner. Indeed the kinetic profiles are entirely consistent with the mechanism of 4-ene steroid 5 alpha-reductase being a rapid equilibrium random sequential process in which the binding of the first substrate has no affect on the binding of the second. Mean values for the dissociation constants, Ktestosterone and KNADPH, were 200 nmol/l and 50 nmol/l, respectively. These findings, coupled with those from earlier studies, suggest that the mechanism of epididymal nuclear 4-ene steroid 5 alpha-reductase is a rapid equilibrium random bireactant process, with the possible dead-end complex: testosterone-4-ene steroid 5 alpha-reductase-NADP+.  相似文献   

7.
Steroidal epoxy and/or N-oxy 17-picolyl and 17-picolinylidene-androst-5-ene derivatives have been prepared using 3beta,17beta-dihydroxy-17alpha-picolyl-androst-5-ene (1), 3beta-acetoxy-17-picolinylidene-androst-5-ene (2), and 3beta-hydroxy-17-picolinylidene-androst-5-ene (3) as synthetic precursors. The compounds 2 and/or 3 were reacted with m-chloroperoxybenzoic acid (MCPBA). The compounds synthesized from 2 were 17-picolinylidene-N-oxide 4, 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene-N-oxide 5 and 6, and 5alpha,6alpha:17alpha,20alpha- and 5beta,6beta:17alpha,20alpha-diepoxy-N-oxide 7 and 8. Starting from compound 3, a mixture of 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene 9 and 10, 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene-N-oxide 11 and 12, and 5alpha,6alpha:17alpha,20alpha- and 5beta,6beta:17alpha,20alpha-diepoxy-N-oxide 13 and 14 were obtained. From compounds 15 and 18, obtained from 1 and 3 by the Oppenauer oxidation, the 4alpha,5alpha-epoxy and 4beta,5beta-epoxy derivatives 16, 17 and 20, 21 were prepared by oxidation with 30% H(2)O(2). Oxidation of 18 with MCPBA yielded only the N-oxide 19. The structures of compounds 15 and 18 were proved by the X-ray analysis. Compounds 1-6, 9, 15, 17, 18, and 21 were tested on activity against the enzyme aromatase. Antitumor activity against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER-, MDA-MB-231, and prostate cancer PC3) was evaluated. Three tested compounds (1, 4, and 19) showed strong activity against PC3, the IC(50) values being in the range 0.55-10microM, whereas compound 17 showed strong activity against MDA-MB-231 (IC(50) 10.4microM).  相似文献   

8.
The purified multifunctional enzyme, 3 beta-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene isomerase from rat testes and adrenals showed similar catalytic properties. They exhibited the same molecular weight of 46,500. Either NAD+ or NADH was required for steroid isomerizing activity, probably as an allosteric effector. It was clearly demonstrated by using the purified enzyme that without NAD(H) no isomerizing activity was detected. In the presence of NADH, or its analogue, 3 beta-hydroxysteroid dehydrogenase obtained from both tissues was inhibited; however, steroid isomerizing activity remained due to the allosteric effect. The results suggest that in these endocrine organs, both enzyme activities reside within the same protein.  相似文献   

9.
Treatment of 3 beta-benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (I) with gaseous HCl in chloroform at -40 degrees C gave, in 87% yield, 3 beta-benzoyloxy-7 alpha,15 beta-dichloro-5 alpha cholest-8(14)-ene (III). Reduction of the latter compound with lithium aluminum hydride in ether at room temperature for 20 min gave, in 86% yield, 7 alpha-15 beta-dichloro-5 alpha-cholest-8(14)-en-3 beta-ol (IV). The latter compound was fully characterized and assignments of the individual carbon peaks in the 13C nuclear magnetic resonance spectra of this sterol have been completed. Reduction of III with excess lithium aluminum hydride in refluxing ether for 4 days gave, in 74% yield, 5 alpha-cholesta-7,14-dien-3 beta-ol (VI). Reduction of the dichloro-steryl benzoate III with lithium triethylborohydride in tetrahydrofuran gave, in 88% yield, 5 alpha-cholest-8(14)-en-3 beta-ol (VII). A similar reduction using lithium triethylborodeuteride led to the formation of [7 beta, 15 xi-2 H2]-VIIa. Treatment of III with concentrated HCl in a mixture of chloroform and methanol gave, in 79% yield, 3 beta-benzoyloxy-5 alpha-cholest-8(14)-en-15-one (II) which was characterized as such and as the corresponding free sterol.  相似文献   

10.
The X-ray crystal structure of 3 beta-benzoyloxy-6 alpha-chloro-5 alpha-cholest-7-ene (IV) was determined by the heavy atom method and refined to R = 0.063 (space group P21, a = 11.364, b = 11.089, c = 12.232, beta = 99.43 degrees, Z = 2). IV was previously shown to be an important intermediate in the acid-catalyzed isomerization of 7-dehydrocholesteryl benzoate. The present work unequivocally establishes the location of the double bond and the configuration of the chlorine of IV, information which is essential to the correct formulation of the mechanism of this reaction.  相似文献   

11.
Through the treatment of rat testicular microsomes with sodium cholate, 3 beta-hydroxy-5-ene-steroid dehydrogenase and 5-ene-4-ene isomerase (abbreviated as the 3 beta-hydroxysteroid dehydrogenase and isomerase, respectively) were solubilized, and then purified by DEAE and hydroxylapatite column chromatographies. The findings were as follows: With this purification procedure, the 3 beta-hydroxysteroid dehydrogenase activity could not be separated from the isomerase. For 3-oxo-4-ene-steroid formation from 3 beta-hydroxy-5-ene-steroids, NAD+ was required as a cofactor. While the 3 beta-hydroxysteroid dehydrogenase required NAD+, the isomerase also required NAD+ or its reduced form, in contrast to the microbial enzyme. On treatment of the purified enzyme with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA), both enzyme activities were markedly reduced. The enzyme, affinity labeled with [adenine-8-14C]FSBA, showed a mol. wt of 46.8 K. During 4-androstenedione production from DHA, 5-androstenedione was detected as an intermediate.  相似文献   

12.
A T Rowland 《Steroids》1975,26(2):251-254
A consistently reproducible method for the preparation of the title compound by the nitration of cholesteryl acetate is given.  相似文献   

13.
An improved synthesis of the diastereomers of 1alpha,25-dihydroxyvitamin D3 (1) was accomplished utilizing our practical route to the A-ring synthon. We applied this procedure to synthesize for the first time all possible A-ring diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). Ten-step conversion of 1-(4-methoxyphenoxy)but-3-ene (6), including enantiomeric introduction of the C-3 hydroxyl group to the olefin by the Sharpless asymmetric dihydroxylation, provided all four possible stereoisomers of A-ring enynes (3). i.e., (3R,5R)-, (3R,5S)-, (3S,5R)- and (3S,5S)-bis[(tert-butyldimethylsilyl)oxy]oct-1-en-7-yne, in good overall yield. Palladium-catalyzed cross-coupling of the A-ring synthon with the 20-epi CD-ring portion (5), (E)-(20S)-de-A,B-8-(bromomethylene)cholestan-25-ol, followed by deprotection, afforded the requisite diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). The biological profiles of the synthesized stereoisomers were assessed in terms of affinities for vitamin D receptor (VDR) and vitamin D binding protein (DBP). HL-60 cell differentiation-inducing activity and in vivo calcium-regulating potency in comparison with the natural hormone.  相似文献   

14.
Summary In situ hybridisation using a biotinylated 1.2-kb human cDNA clone for human 3-beta-hydroxy-5-ene steroid dehydrogenase (HSD) supports the provisional regional localisation of the HSD gene to chromosome 1p13 and refines this localisation to 1p13.1.  相似文献   

15.
Mycelium of the basidiomycete Pleurotus sapidus known to contain a novel dioxygenase was used for the bioconversion of car-3-ene [I]. After 4h of incubation 25.3mgL(-1) car-3-en-5-one [V], 5.4mgL(-1) car-3-en-2-one [VII], and 7.3mgL(-1) car-2-en-4-one [XV] accumulated as major oxidation products. The identity of the respective carenones and their corresponding alcohols was confirmed by comparison with MS and NMR spectral data obtained for synthesized authentic compounds. The peak areas of oxidation products were at least five times higher as compared with autoxidation. A radical mechanism similar to lipoxygenase catalysis was proposed and substantiated with detailed product analyses. The reduction of assumed car-3-ene hydroperoxides to the corresponding alcohols evidenced the radical initiated formation of hydroperoxides and confirmed the regio- and stereo-selectivity of the dioxygenase. The introduction of molecular oxygen into the bicyclic car-3-ene [I] molecule occurred at allylic positions of a cyclic isopentenyl moiety with a pronounced preference for the position adjacent to the non-substituted carbon atom of the C-C-double bond. This co-factor independent selective oxygenation presents an alternative to P450 mono-oxygenase based approaches for the production of terpene derived flavor compounds, pharmaceuticals and other fine chemicals.  相似文献   

16.
Adrenal cortex 3β-hydroxysteroid dehydrogenase (3β-HSD) is able to convert many C19 and C21 3β-OH-5-ene steroids into products with a 3-keto-4-ene structure. In the present investigation we describe the conversion of a number of C27 and C24 3β-5-ene sterols by adrenal milochondrial 3β-HSD. Among these substrates were (20S)-5-cholestcne-3β,20-diol. (22R)-5-cholestene-3β,22-diol and (20R,22R)-5-cholestene-3β,20.22-triol, compounds occurring as intermediates in the cholesterol side-chain cleavage reaction. Cholesterol itself was not converted to a measurable extent.  相似文献   

17.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

18.
The course of the transformation of six 5-ene steroids with varying substituents at C-17 or/and C-3: dehydroepiandrosterone (DHEA), 5-androsten-3beta,17beta-diol, 17alpha-methyl-5-androsten-3beta,17beta-diol, 5-androsten-17-one, 5-androsten-3beta-ol and pregnenolone by Fusarium culmorum was investigated. Three substrates with oxygen functions at C-3 and C-17 i.e. DHEA, 5-androsten-3beta,17beta-diol and 17alpha-methyl-5-androsten-3beta,17beta-diol were hydroxylated entirely at 7alpha-axial, allylic position. The mixture of 7alpha-hydroxy- and 7alpha,15alpha-dihydroxyderivatives was formed during the transformation of pregnenolone and 5-androsten-17-one, from the latter 2alpha,7alpha-dihydroxyderivative was also obtained. 7alpha,15alpha- Dihydroxyderivative was the only product isolated from the 5-androsten-3beta-ol post-transformation mixture. The time-course of the DHEA transformation by F. culmorum shows that the substrate induces 7alpha-hydroxylase activity. DHEA was transformed by androstenedione induced F. culmorum cultures to a larger extent than by a noninduced microorganism; the selectivity of the transformation remained unchanged.  相似文献   

19.
Synthesis of the isomeric 3 beta-acetoxy-20-chloro-5 alpha-pregnanes   总被引:1,自引:0,他引:1  
R T Li  Y Sato 《Steroids》1969,13(4):451-456
  相似文献   

20.
The monoclonal antibody FDO161G reacts with a 43-kDa protein found in human extravillous trophoblast, syncytiotrophoblast, adrenal cortex, interstitial cells of the testis and ovarian follicle cumulus cells. cDNAs for this protein have been isolated from the lambda gt11 library, sequenced, and expressed in COS-7 cells. The protein was identified as 3 beta-hydroxy-5-ene steroid dehydrogenase (HSD). The sequence of the HSD protein raises questions about its association with cell membrane systems. The lack of reactivity of FDO161G with other tissues suggests that HSD has a limited tissue distribution and that other enzymes may exist in peripheral tissues, which can convert delta 5 3-hydroxysteroids to delta 4 3-ketosteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号