首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
Arrestin is involved in the quenching of phototransduction by binding to photoactivated and phosphorylated rhodopsin (P-Rho*). To study its conformational changes and regions interacting with P-Rho*, arrestin was subjected to (1) differential acetylation at lysine residues in the presence and absence of P-Rho*, and (2) amide hydrogen/deuterium exchange. Labeled protein was proteolysed and analyzed by mass spectrometry. Three Lys residues, 28, 176, and 211, were protected from acetylation in native arrestin, although they were not located in regions exhibiting slow amide hydrogen exchange rates. The presence of P-Rho* protected lysine 201 from acetylation and partially protected 14 other lysyl residues, including (2, 5), (163, 166, 167), (232, 235, 236, 238), (267, 276), (298, 300), and 367, where parentheses indicate lysine residues found within the same peptide. In contrast, in the C-terminal region of arrestin, lysyl residues (386, 392, 395) were more exposed upon binding to P-Rho*. These data allowed us to identify functional regions in the arrestin molecule.  相似文献   

2.
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.  相似文献   

3.
Mechanism of rhodopsin kinase activation   总被引:9,自引:0,他引:9  
The role of the cytoplasmic loops and C-terminal region of bovine rhodopsin (Rho) in binding and activating rhodopsin kinase was investigated. The ability of various enzymatically truncated forms of photolyzed rhodopsin (Rho*) to stimulate rhodopsin kinase activity was quantified. Following endopeptidase Asp-N cleavage of all phosphorylation sites on the C-terminal, the resulting truncated Rho* (329G-Rho*) was not phosphorylated by rhodopsin kinase. This suggests that rhodopsin kinase only phosphorylates C-terminal sites of Rho*. However 329G-Rho* could bind rhodopsin kinase and stimulate phosphorylation of exogenous peptide. Kinase stimulation was investigated for other truncated forms of Rho* in which the C-terminal region was either partially or completely eliminated, and the V-VI loop was either cleaved or left intact (339K-Rho*, 341E239E-Rho*, 329G239E-Rho*, 327P240S-Rho*). Results suggest that the V-VI loop is crucial for kinase binding (similar to the binding of GT). Mastoparan, a model peptide for G-protein-coupled receptors, was found to stimulate rhodopsin kinase in a mechanism similar to that of truncated Rho*. We conclude that rhodopsin kinase binds to the cytoplasmic loops of Rho* to cause a stimulation of its catalytic activity.  相似文献   

4.
The binding of arrestin to rhodopsin is initiated by the interaction of arrestin with the phosphorylated rhodopsin C-terminus and/or the cytoplasmic loops, followed by conformational changes that expose an additional high-affinity site on arrestin. Here we use an arrestin mutant (R175E) that binds similarly to phosphorylated and unphosphorylated, wild-type rhodopsin to identify rhodopsin elements other than C-terminus important for arrestin interaction. R175E-arrestin demonstrated greatly reduced binding to unphosphorylated cytoplasmic loop mutants L72A, N73A, P142A and M143A, suggesting that these residues are crucial for high-affinity binding. Interestingly, when these rhodopsin mutants are phosphorylated, R175E-arrestin binding is less severely affected. This effect of phosphorylation on R175E-arrestin binding highlights the co-operative nature of the multi-site interaction between arrestin and the cytoplasmic loops and C-terminus of rhodopsin. However, a combination of any two mutations disrupts the ability of phosphorylation to enhance binding of R175E-arrestin. N73A, P142A and M143A exhibited accelerated rates of dissociation from wild-type arrestin. Using sensitivity to calpain II as an assay, these cytoplasmic loop mutants also demonstrated reduced ability to induce conformational changes in arrestin that correlated with their reduced ability to bind arrestin. These results suggest that arrestin bound to rhodopsin is in a distinct conformation that is co-ordinately regulated by association with the cytoplasmic loops and the C-terminus of rhodopsin.  相似文献   

5.
Fluorescence lifetime and intensity quenching studies of human plasma apolipoprotein A-I (apo A-I) in aqueous solution and in recombinant lipoprotein complexes with dimyristoylphosphatidylcholine (DMPC) indicate differences in conformational dynamics. In aqueous solution, the bimolecular quenching constants (k*) for lipid-free apo A-I fluorescence quenching by oxygen and acrylamide are 2.4 X 10(9) and 0.38 X 10(9) M-1 s-1, respectively. These values are independent of the oligomeric form of the protein. There is no correlation between the relatively small k* for apo A-I, which reflects rapid, low-amplitude protein fluctuations, and the labile conformational changes of apo A-I folding reactions, like denaturation, which occur on a slower time scale. In recombinant DMPC/apo A-I complexes (100:1 molar ratio) the protein increases in amphiphilic alpha-helical structure as it blankets the lipid matrix. The apparent k* for oxygen quenching of apo A-I fluorescence in the complex is large and increases in a temperature-dependent manner. We have introduced a two-compartment model, which discriminates the source of quencher molecules as aqueous or lipid, to describe oxygen quenching of DMPC/apo A-I fluorescence. The magnitude and temperature dependence of the apparent k* predominantly reflect the partitioning of oxygen between the two phases rather than being a probe of the lipid physical state. Calculations of the helical hydrophobic moment in apo A-I indicate that tryptophan residues 8 and 72 occur at the lipid-protein interface of amphiphilic alpha-helices, whereas the other two tryptophan residues (50, 108) lie on the nonpolar faces of amphiphilic helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Flowers S  Biswas EE  Biswas SB 《Biochemistry》2003,42(7):1910-1921
DnaB helicase of E. coli unwinds duplex DNA in the replication fork using the energy of ATP hydrolysis. We have analyzed structural and conformational changes in the DnaB protein in various nucleotides and DNA bound intermediate states by fluorescence quenching analysis of intrinsic fluorescence of native tryptophan (Trp) residues in DnaB. Fluorescence quenching analysis indicated that Trp48 in domain alpha is in a hydrophobic environment and resistant to fluorescence quenchers such as potassium iodide (KI). In domain beta, Trp294 was found to be in a partially hydrophobic environment, whereas Trp456 in domain gamma appeared to be in the least hydrophobic environment. Binding of oligonucleotides to DnaB helicase resulted in a significant attenuation of the fluorescence quenching profile, indicating a change in conformation. ATPgammaS or ATP binding appeared to lead to a conformation in which Trp residues had a higher degree of solvent exposure and fluorescence quenching. However, the most dramatic increase of Trp fluorescence quenching was observed with ADP binding with a possible conformational relaxation. Site-specific Trp --> Cys mutants of DnaB helicase demonstrated that conformational change upon ADP binding could be attributed exclusively to a conformational transition in the alpha domain leading to an increase in the solvent exposure of Trp48. However, formation of DnaB.ATPgammaS.DNA ternary complex led to a conformation with a fluorescence quenching profile similar to that observed with DnaB alone. The DnaB.ADP.DNA ternary complex produced a quenching curve similar to that of DnaB.ADP complex pointing to a change in conformation due to ATP hydrolysis. There are at least four identifiable structural/conformational states of DnaB helicase that are likely important in the helicase activity. The noncatalytic alpha domain in the N-terminus appeared to undergo the most significant conformational changes during nucleotide binding and hydrolysis. This is the first reported elucidation of the putative role of domain alpha, which is essential for DNA helicase action. We have correlated these results with partial structural models of alpha, beta, and gamma domains  相似文献   

7.
A combination of intrinsic fluorescence and circular dichroic (CD) spectroscopy has been used to characterize the complexes formed between bovine retinal arrestin and heparin or phytic acid, two ligands that are known to mimic the structural changes in arrestin attending receptor binding. No changes in the CD spectra were observed upon ligand binding, nor did the degree of tryptophan fluorescence quenching change significantly in the complexes. These data argue against any large-scale changes in protein secondary or tertiary structure accompanying ligand binding. The change in tyrosine fluorescence intensity was used to determine the dissociation constants for the heparin and phytic acid complexes of arrestin. The only change observed was a saturable diminution of tyrosine fluorescence signal from the protein. For both ligands, the data suggest two distinct binding interactions with the protein—a high-affinity interaction with K d between 200 and 300 nM, and a lower affinity interaction with K d between 2 and 8 M. Study of collisional quenching of tyrosine fluorescence in free arrestin and the ligand-replete complexes indicates that 10 of the 14 tyrosine residues of the protein are solvent-exposed in the free protein; this value drops to between 5 and 6 solvent-exposed residues in the high-affinity complexes of the two ligands. These data suggest that ligand binding leads to direct occlusion of between 4 and 5 tyrosine residues on the solvent-exposed surface of the protein, but not to any large-scale changes in protein structure. The large activation energy previously reported to be associated with arrestin–receptor interactions may therefore reflect localized movements of the N- and C-termini of arrestin, which are proposed to interact in the free protein through electrostatic interactions. Binding of the anionic ligands heparin, phytic acid, or phosphorylated rhodopsin may compete with the C-terminus of arrestin for these electrostatic interactions, thus allowing the C-terminus to swing out of the binding region.  相似文献   

8.
Physicochemical characterization of bovine retinal arrestin   总被引:1,自引:0,他引:1  
The native conformation of bovine retinal arrestin has been characterized by a variety of spectroscopic methods. The purified protein gives rise to a near uv absorption band centered at 279 nm which results from the absorbance of its 14 tyrosine and one tryptophan residue. The extinction coefficient for this absorption band was determined to be 38.64 mM-1, cm-1 using the tyrosinate-tyrosine difference spectrum method; this extinction coefficient is ca. 17% lower than the previously reported value, and provides estimates of protein concentration which are in good agreement with estimates from the Bradford colorimetric assay. When native arrestin is purified to homogeneity, it displays a fluorescence spectrum which is dominated by tyrosine emission with no discernible contribution from tryptophan. Observation of the tyrosine-like fluorescence is dependent on the purity and structural integrity of the protein. Denaturation of arrestin by guanidine hydrochloride results in a diminution of tyrosine fluorescence and the concomitant appearance of a second fluorescence maximum at ca. 340 nm, presumably due to the single tryptophan residue. Thermal denaturation of arrestin leads to a conformation characterized by a broad fluorescence band centered at ca. 325 nm. Study of the arrestin fluorescence spectrum as a function of temperature indicates that the thermal denaturation is well modeled as a two-state transition with a transition midpoint of 60 degrees C. Temperature-dependent far uv circular dichroism studies indicate that changes in secondary structure occur coincident with the change in fluorescence. Studies of the temperature dependence of arrestin binding to light-adapted phosphorylated rhodopsin shows a strong correlation between the fluorescence spectral features of arrestin and its ability to bind rhodopsin. These data suggest that the relative intensities of tyrosine and tryptophan fluorescence are sensitive to the structural integrity of the native (i.e., rhodopsin binding) state of arrestin, and can thus serve as useful markers of conformational transitions of this protein. The lack of tryptophan fluorescence for native arrestin suggests an unusual environment for this residue. Possible mechanisms for this tryptophan fluorescence quenching are discussed.  相似文献   

9.
Myosin has three highly-conserved, unique loops [B (320-327), M (677-689), and N (127-136)] at the entrance of the ATP binding cleft, and we previously showed that the effects of actin are mediated by a conformational change in loop M [Maruta and Homma (1998) J. Biochem. 124, 528-533]. In the present study, loops M and N were photolabeled respectively with fluorescent probes Mant-8-N(3)-ADP and Mant-2-N(3)-ADP in order to study conformational changes in the loops related to energy transduction. The effect of actin on the conformation of loop N was examined by analyzing fluorescence polarization and acrylamide quenching; the results were then compared with those previously reported for loop M. In contrast to loop M, the fluorescence polarization and the value of K(sv) of the Mant-groups crosslinked to loop N were slightly affected by actin binding. To study conformational changes in loops M and N during the ATPase cycle, FRET was analyzed using TNP-ADP.BeFn and TNP-ADP. AlF(4)(-) as FRET acceptors of Mant fluorescence. The resultant estimated distances between loop M and the active site differed for the Mant-S1.TNP-ADP.BeFn and Mant-S1.TNP-ADP.AlF(4)(-) complexes, whereas the distances between loop N and the active site differed slightly. These findings indicate that the conformation of loop M changes during the ATPase cycle, suggesting that Loop M acts as a signal transducer mediating communication between the ATP- and actin-binding sites. Loop N, by contrast, is not significantly flexible.  相似文献   

10.
It has been shown previously that glutaraldehyde cross-links the Ca(2+)-ATPase of sarcoplasmic reticulum intramolecularly at the active site, involving residues participating in nucleotide binding and the conformational change that results in Ca2+ release to the vesicle lumen and formation of ADP-insensitive E2-P (Ross, D. C., Davidson, G. A., and McIntosh, D. B. (1991) J. Biol. Chem. 266, 4613-4621). This study shows that 10 nmol of [14C]glutaraldehyde/mg of protein attached irreversibly to the ATPase under conditions optimal for formation of the intramolecular cross-link. Half of this amount (i.e. 1 mol/mol ATPase) was inhibited by nucleotide binding. Thermolysin digestion of derivatized vesicles released two nucleotide-sensitive 14C-labeled species, which were isolated and identified as FSRDR*S AND FSRDR*S FA* FA*VEPS where the missing residues are Lys-492 and Arg-678. The majority of the 14C label was released in the sixth cycle of both Edman degradations, confirming the cross-link position. Lys-492 and Arg-678 are evidently close together in the active site, but their distance apart in the linear sequence suggests that they may arise from separate domains, which together constitute an ATP binding cleft. Residues in both regions, and Lys-492 in particular (McIntosh, D.B., Woolley, D.G., and Berman, M.C. (1992) J. Biol. Chem. 267, 5301-5309), have been derivatized by nucleotide-based affinity probes. Mutations of both of these residues in some of the bacterial P-type ATPases suggest that they do not play an essential catalytic role, and the inability of the cross-linked ATPase to form E2-P and to release Ca2+ to the lumen is probably because an essential tertiary structural movement at the active site is blocked.  相似文献   

11.
In this article, a facile and convenient synthesis of thiazol‐2(3H)‐ylidine derivatives of fatty acid ( 3a – c ) is described. The binding of N′‐(4,5‐dimethyl‐3‐penylthiazol‐2(3H)‐ylidine)octadec‐9‐enehydrazide ( 3a ) with human serum albumin (HSA) is explored using various spectral methods and molecular docking. Fluorescence quenching results show that 3a induces conformational changes in HSA and the polarity around the tryptophan residues is increased. Stern–Volmer quenching plots at different temperatures (298, 305 and 312 K) show that the fluorescence quenching mechanism is static quenching. Synchronous fluorescence, 3D fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy are used to determine the structural change in HSA on interaction with 3a . Förster resonance energy transfer analysis shows that the binding distance (r0 = 2.78 nm) between HSA (Trp214) and 3a is within the of range 2–8 nm for quenching to occur. The molecular docking study also confirms that 3a is located in subdomain IIA (site I) of HSA and is stabilized by hydrogen bonding and hydrophobic forces.  相似文献   

12.
Desensitization of agonist-activated G protein-coupled receptors (GPCRs) requires phosphorylation followed by the binding of arrestin, a ~48 kDa soluble protein. While crystal structures for the inactive, 'basal' state of various arrestins are available, the conformation of 'activated' arrestin adopted upon interaction with activated GPCRs remains unknown. As a first step towards applying high-resolution structural methods to study arrestin conformation and dynamics, we have utilized the subtilisin prodomain/Profinity eXact? fusion-tag system for the high-level bacterial expression and one-step purification of wild-type visual arrestin (arrestin 1) as well as a mutant form (R175E) of the protein that binds to non-phosphorylated, light-activated rhodopsin (Rho?). The results show that both prodomain/Profinity eXact? fusion-tagged wild-type and R175E arrestins can be expressed to levels approaching 2-3 mg/l in Luria-Bertani media, and that the processed, tag-free mature forms can be purified to near homogeneity using a Bio-Scale? Mini Profinity eXact? cartridge on the Profinia? purification system. Functional analysis of R175E arrestin generated using this approach shows that it binds to non-phosphorylated rhodopsin in a light-dependent manner. These findings should facilitate the structure determination of this 'constitutively activated' state of arrestin 1 as well as the monitoring of conformational changes upon interaction with Rho?.  相似文献   

13.
Visual arrestin plays an important role in regulating light responsiveness via its ability to specifically bind to the phosphorylated and light-activated form of rhodopsin. To further characterize rhodopsin/arrestin interactions we have utilized a rabbit reticulocyte lysate translation system to synthesize bovine visual arrestin. The translated arrestin (404 amino acids) was demonstrated to be fully functional in terms of its ability to specifically recognize and bind to phosphorylated light-activated rhodopsin (P-Rh*). Competitive binding studies revealed that the in vitro synthesized arrestin and purified bovine visual arrestin had comparable affinities for P-Rh*. In an effort to assess the functional role of different regions of the arrestin molecule, two truncated arrestin mutants were produced by cutting within the open reading frame of the bovine arrestin cDNA with selective restriction enzymes. In vitro translation of the transcribed truncated mRNAs resulted in the production of arrestins truncated from the carboxyl terminus. The ability of each of the mutant arrestins to bind to dark (Rh), light-activated (Rh*), dark phosphorylated (P-Rh), and light-activated phosphorylated rhodopsin were then compared. Arrestin lacking 39 carboxyl-terminal residues binds specifically not only to P-Rh* but also to Rh* and P-Rh. This suggests that the carboxyl-terminal domain of arrestin plays an important regulatory role in ensuring strict arrestin binding selectivity to P-Rh*. Arrestin that has only the first 191 amino-terminal residues predominately discriminates the phosphorylation state of the rhodopsin; however, it also retains some binding specificity for the activation state. These results suggest that the amino-terminal half of arrestin contains key rhodopsin recognition sites responsible for interaction with both the phosphorylated and light-activated forms of rhodopsin.  相似文献   

14.
Imhof N  Kuhn A  Gerken U 《Biochemistry》2011,50(15):3229-3239
The binding of Pf3 coat protein to the membrane insertase YidC from Escherichia coli induces a conformational change in the tertiary structure of the insertase, resulting in a quenching of the intrinsic tryptophan (Trp) fluorescence. Tryptophan mutants of YidC were generated to examine such conformational movements in detail with time-resolved and steady-state fluorescence spectroscopy. Ten of the 11 Trp residues within YidC were substituted to phenylalanines generating single Trp mutants either at position 354, 454, or 508. In addition, a double mutant with Trp residues at 332 and 334 was studied. Purified YidC mutants were reconstituted into DOPC/DOPG vesicles and titrated with a Trp-free mutant of Pf3 coat, enabling a detailed conformational study of the periplasmic P1, P2, and P3 domains of YidC before and after binding of substrate. Time-resolved fluorescence anisotropy revealed that the mobility of the residues W332/W334 and W508 was considerably increased after binding of Pf3 coat to the insertase. Furthermore, analysis of the fluorescence emission spectra and the decay times showed that all Trp residues are embedded in an equivalent environment that is a membrane/water interface.  相似文献   

15.
Arrestins quench the signaling of a wide variety of G protein-coupled receptors by virtue of high-affinity binding to phosphorylated activated receptors. The high selectivity of arrestins for this particular functional form of receptor ensures their timely binding and dissociation. In a continuing effort to elucidate the molecular mechanisms responsible for arrestin's selectivity, we used the visual arrestin model to probe the functions of its N-terminal beta-strand I comprising the highly conserved hydrophobic element Val-Ile-Phe (residues 11-13) and the adjacent positively charged Lys(14) and Lys(15). Charge elimination and reversal in positions 14 and 15 dramatically reduce arrestin binding to phosphorylated light-activated rhodopsin (P-Rh*). The same mutations in the context of various constitutively active arrestin mutants (which bind to P-Rh*, dark phosphorylated rhodopsin (P-Rh), and unphosphorylated light-activated rhodopsin (Rh*)) have minimum impact on P-Rh* and Rh* binding and virtually eliminate P-Rh binding. These results suggest that the two lysines "guide" receptor-attached phosphates toward the phosphorylation-sensitive trigger Arg(175) and participate in phosphate binding in the active state of arrestin. The elimination of the hydrophobic side chains of residues 11-13 (triple mutation V11A, I12A, and F13A) moderately enhances arrestin binding to P-Rh and Rh*. The effects of triple mutation V11A, I12A, and F13A in the context of phosphorylation-independent mutants suggest that residues 11-13 play a dual role. They stabilize arrestin's basal conformation via interaction with hydrophobic elements in arrestin's C-tail and alpha-helix I as well as its active state by interactions with alternative partners. In the context of the recently solved crystal structure of arrestin's basal state, these findings allow us to propose a model of initial phosphate-driven structural rearrangements in arrestin that ultimately result in its transition into the active receptor-binding state.  相似文献   

16.
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFNα2 and IFNβ induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFNα2 or IFNβ with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.  相似文献   

17.
The interaction between paracetamol and human serum albumin (HSA) under physiological conditions has been investigated by fluorescence, circular dichroism (CD) and docking. Fluorescence data revealed that the fluorescence quenching of HSA by paracetamol was the result of the formed complex of HSA–paracetamol, and the binding constant (Ka) and binding number obtained is 1.3 × 104 at 298 K and 2, respectively for the primary binding site. Circular dichorism spectra showed the induced conformational changes in HSA by the binding of paracetamol. Moreover, protein–ligand docking study indicated that paracetamols (two paracetamols bind to HSA) bind to residues located in the subdomain IIIA.  相似文献   

18.
We have introduced tryptophan as a local fluorescent probe to monitor the conformation of Vibrio harveyi acyl carrier protein (ACP), a small flexible protein that is unfolded at neutral pH but must undergo reversible conformational change during the synthesis and delivery of bacterial fatty acids. Consistent with known 3D structures of ACP, steady-state fluorescence and quenching experiments indicated that Trp at positions 46, 50, and 72 are buried in the hydrophobic core upon Mg(2+)-induced ACP folding, whereas residues 25 and 45 remain in a hydrophilic environment on the protein surface. Attachment of fatty acids to the phosphopantetheine prosthetic group progressively stabilized the folded conformation of all Trp-substituted ACPs, but longer chains (14:0) were less effective than medium chains (8:0) in shielding Trp from acrylamide quenching in the L46W protein. Interaction with ACP-dependent enzymes LpxA and holo-ACP synthase also caused folding of L46W; fluorescence quenching indicated proximity of Trp-45 in helix II of ACP in LpxA binding. Our results suggest that divalent cations and fatty acylation produce differing environments in the ACP core and also reveal enzyme partner-induced folding of ACP, a key feature of "natively unfolded" proteins.  相似文献   

19.
Arrestins selectively bind to the phosphorylated activated form of G protein-coupled receptors, thereby blocking further G protein activation. Structurally, arrestins consist of two domains topologically connected by a 12-residue long loop, which we term the "hinge" region. Both domains contain receptor-binding elements. The relative size and shape of arrestin and rhodopsin suggest that dramatic changes in arrestin conformation are required to bring all of its receptor-binding elements in contact with the cytoplasmic surface of the receptor. Here we use the visual arrestin/rhodopsin system to test the hypothesis that the transition of arrestin into its active receptor-binding state involves a movement of the two domains relative to each other that might be limited by the length of the hinge. We have introduced three insertions and 24 deletions in the hinge region and measured the binding of all of these mutants to light-activated phosphorylated (P-Rh*), dark phosphorylated (P-Rh), dark unphosphorylated (Rh), and light-activated unphosphorylated rhodopsin (Rh*). The addition of 1-3 extra residues to the hinge has no effect on arrestin function. In contrast, sequential elimination of 1-8 residues results in a progressive decrease in P-Rh* binding without changing arrestin selectivity for P-Rh*. These results suggest that there is a minimum length of the hinge region necessary for high affinity binding, consistent with the idea that the two domains move relative to each other in the process of arrestin transition into its active receptor-binding state. The same length of the hinge is also necessary for the binding of "constitutively active" arrestin mutants to P-Rh*, dark P-Rh, and Rh*, suggesting that the active (receptor-bound) arrestin conformation is essentially the same in both wild type and mutant forms.  相似文献   

20.
In this study, we address the mechanism of visual arrestin release from light-activated rhodopsin using fluorescently labeled arrestin mutants. We find that two mutants, I72C and S251C, when labeled with the small, solvent-sensitive fluorophore monobromobimane, exhibit spectral changes only upon binding light-activated, phosphorylated rhodopsin. Our analysis indicates that these changes are probably due to a burying of the probes at these sites in the rhodopsin-arrestin or phospholipid-arrestin interface. Using a fluorescence approach based on this observation, we demonstrate that arrestin and retinal release are linked and are described by similar activation energies. However, at physiological temperatures, we find that arrestin slows the rate of retinal release approximately 2-fold and abolishes the pH dependence of retinal release. Using fluorescence, EPR, and biochemical approaches, we also find intriguing evidence that arrestin binds to a post-Meta II photodecay product, possibly Meta III. We speculate that arrestin regulates levels of free retinal in the rod cell to help limit the formation of damaging oxidative retinal adducts. Such adducts may contribute to diseases like atrophic age-related macular degeneration (AMD). Thus, arrestin may serve to both attenuate rhodopsin signaling and protect the cell from excessive retinal levels under bright light conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号