首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enantiomers or diastereomers of chiral bioactive compounds often exhibit different biological and toxicological properties. Here, we report the efficient synthesis of four stereoisomers of sphingosine and derivatization of unique chiral ceramides through a combinatorial chemistry by solid-phase activated resin ester. In addition, to test the effectivity of stereochemistry of ceramide, we demonstrated a cell-based assay of sphingomyelin synthase inhibition in the presence ofchiral unique ceramides, which suggested that libraries of this sort will be a rich source of biologically active synthetic molecules.  相似文献   

2.
Eliglustat is a ceramide glucosyltransferase inhibitor work as first line oral therapy for adults with Gaucher disease type 1 (a rare disease) at present. Although the eliglustat in enantiomerically pure forms is obtained by asymmetric syntheses, the reported methods suffer from many limits when it comes to industrial applications. Therefore, the preparation of a racemic mixture followed by resolution can still be a viable and straightforward alternative, especially when it could be adapted to large scale. Herein, we developed an effective and practical synthetic route to prepare stereoisomers mixture of eliglustat, and a novel chiral resolution method to prepare eliglustat. Using 1,1′-Binaphthyl-2,2′-diyl -hydrogenphosphate (BNDHP) as resolution reagent, optical pure eliglustat (e.e. >99%, 13.97% total yield) could be obtained after recrystallization.  相似文献   

3.
A rather widespread idea on the functional importance of sphingolipids in cell membranes refers to the occurrence of ordered domains enriched in sphingomyelin and ceramide that are largely assumed to exist irrespective of the type of N-acyl chain in the sphingolipid. Ceramides and sphingomyelins are the simplest kind of two-chained sphingolipids and show a variety of species, depending on the fatty acyl chain length, hydroxylation, and unsaturation. Abundant evidences have shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics, and miscibility, and that even the usually conceived “condensed” sphingolipids and many of their mixtures may exhibit liquid-like expanded states. Their lateral miscibility properties are subtlety regulated by those chemical differences. Even between ceramides with different acyl chain length, their partial miscibility is responsible for a rich two-dimensional structural variety that impacts on the membrane properties at the mesoscale level. In this review, we will discuss the miscibility properties of ceramide, sphingomyelin, and glycosphingolipids that differ in their N-acyl or oligosaccharide chains. This work is a second part that accompanies a previous overview of the properties of membranes formed by pure ceramides or sphingomyelins, which is also included in this Special Issue.  相似文献   

4.
This paper describes an improved procedure for the reaction of the primary hydroxyl group of 3-O-benzoylceramides with β-bromoethylphosphoryldichloride and for the subsequent reaction with trimethylamine (fig. 1). Column chromatography of the resulting reaction mixtures gives sphingomyelins and the corresponding ceramides in high purity. The procedure is generally applicable for the synthesis of sphingomyelins with saturated, unsaturated, and 2-hydroxy fatty acid chains.  相似文献   

5.
Large-scale HPLC purification of calbindin D9k from porcine intestine   总被引:1,自引:0,他引:1  
Two efficient procedures for large-scale purification of calbindin D9k from porcine intestine by HPLC were developed. Both protocols start with heat treatment of the intestinal tissue followed by acetic acid extraction, a capture with alginic acid, NaCl precipitation of other proteins, and a concentration step on Amberlite XAD-2. In the first method, a single reverse-phase HPLC step completes the purification and results in milligram quantities of pure calbindin. In the second method, an additional ion exchange HPLC step was introduced, followed by a reverse-phase HPLC resulting in 100 milligram-scale preparations of homogeneous calbindin in a 56% yield from the Amberlite step. Both methods yielded a homogeneous metal-free apoprotein with a molecular weight of 8838.0 +/- 8.8 as analyzed by MALDI TOF mass spectrometry corresponding to N-acetylated porcine calbindin. The isolated apocalbindin was fully reconstituted with 2 molar equivalents of Ca(2+) and the protein displayed UV and fluorescence spectra characteristic of those of native calbindin D9k.  相似文献   

6.
The metabolism of sphingomyelins and ceramides with defined labeled fatty acids was compared after injection in vivo or incubation with cultured cells. The liver was the major site of uptake of sphingomyelins and ceramides with 18:2 or 16:0 fatty acids, but with both sphingolipids a higher recovery of radioactivity was found with 16:0 species. The distribution of radioactivity among liver lipids showed that 1.5 h after injection of 18:2 sphingomyelin, only 21% of the label was found as sphingomyelin, and this value was 37% in the case of 16:0 sphingomyelin. There was a very marked difference in the metabolism of 18:2 and 16:0 ceramides. After injection of 18:2 ceramide only 14% of the radioactivity was recovered as sphingomyelin, and this value was more than 50% with 16:0 ceramide. [14C]18:2 ceramide was converted also to glucoceramide and hydrolyzed more extensively than 16:0 ceramide. These observations were extended to sphingomyelins and ceramides with other fatty acids, using Hep-G2 cells in culture. Significantly more radioactivity was recovered as labeled sphingomyelin after incubation with 16:0, 18:0, 20:0 and 24:0 sphingomyelins than with 18:1 and 18:2 sphingomyelins, while more labeled phosphatidylcholine and phosphatidylethanolamine were found with the unsaturated sphingomyelins. In analogy to the findings in vivo, in the Hep-G2 cells more 16:0, 18:0 and 24:0 ceramides were converted to sphingomyelin than 18:1 or 18:2 ceramides. These differences were also seen with cultured macrophages, in which a more marked reutilization for sphingomyelin formation was found with the saturated ceramide series. The sphingomyelin liposomes were tested also for their capacity to mobilize cholesterol, and a rise in plasma unesterified cholesterol occurred after injection of 18:2 sphingomyelin. Marked enhancement of cholesterol efflux from cholesterol ester-loaded macrophages was also seen with 18:1 and 18:2, 20:0 sphingomyelin in the presence of delipidated high-density lipoprotein. The present results demonstrate that the metabolic fate of sphingolipids is related to their fatty acid composition. While ceramides with saturated fatty acids are predominantly reutilized for sphingomyelin formation, those with unsaturated fatty acids undergo probably more rapid hydrolysis with liberation of fatty acids and channeling into glycerolipids.  相似文献   

7.
We developed an enantioselectively catalyzed tandem synthesis of structurally and stereochemically complex molecules that forms four carbon-carbon bonds and sets eight stereocenters with high regio-, diastereo- and enantioselectivity. It can be programmed to yield different stereoisomers by varying only the order of combination of a common set of reagents and catalysts. We report what is to our knowledge the first synthesis of both enantiomers of a chiral compound using the same chiral catalyst.  相似文献   

8.
The optically active C3 synthetic blocks are remarkably versatile intermediates for the synthesis of numerous pharmaceuticals and agrochemicals. This work provides a simple and efficient enzymatic synthetic route for the environment‐friendly synthesis of C3 chiral building blocks. Chloroperoxidase (CPO)‐catalyzed enantioselective halo‐hydroxylation and epoxidation of chloropropene and allyl alcohol was employed to prepare C3 chiral building blocks in this work, including (R)‐2,3‐dichloro‐1‐propanol (DCP*), (R)‐2,3‐epoxy‐1‐propanol (GLD*), and (R)‐3‐chloro‐1‐2‐propanediol (CPD*). The ee values of the formed C3 chiral building blocks DCP*, CPD*, and glycidol were 98.1, 97.5, and 96.7%, respectively. Moreover, the use of small amount of imidazolium ionic liquid enhanced the yield efficiently due to the increase of solubility of hydrophobic organic substrates in aqueous reaction media, as well as the improvement of affinity and selectivity of CPO to substrate. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:724–729, 2015  相似文献   

9.
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier.  相似文献   

10.
This study reports a single-step analysis of the molecular species of endogenous ceramides and of the ceramide moiety of sphingomyelins in biological samples, using gas liquid chromatography (GLC). Silylated sphingomyelins were quantitatively converted to monosilylated ceramide upon injection into GLC, whereas the free ceramides were di-silylated on the primary and secondary alcohol function, as confirmed by mass spectrometry. The reproducible shift of the retention times between the mono- and di-silylated derivatives enables simultaneous quantification of the variety of sphingomyelin and ceramide molecular species. Overlapping diacylglycerols were first removed by a mild alkaline treatment of the lipid extract. The lowest detection limit (5 pmol) did not allow for identification of free ceramides in human plasma, but 17 molecular species of ceramides derived from sphingomyelins were quantified, from NC16:0 up to NC24:1. By contrast, three major free ceramides (NC16:0, NC24:0, and NC24:1) were quantified in HEPG2 and Chinese hamster ovary (CHO) cells. Upon induction of apoptosis in CHO cells by C6-ceramide, we could follow the disappearance of the C6-ceramide, its partial conversion to C6-sphingomyelin, and the prominent increase of NC16:0 ceramide. Thus, our method represents a unique procedure of simultaneous analysis of sphingomyelin and ceramide molecular species able to monitor the variation of the different pools in biological samples.  相似文献   

11.
Wipf P  Jayasuriya N  Ribe S 《Chirality》2003,15(3):208-212
Unusual nonlinear asymmetric amplification and chiral ligand loading effects were discovered for the use of catalytic quantities of chiral aminoalcohols in the in situ hydrozirconation-transmetalation-aldehyde addition processes. While the stereochemically most efficient aminothiol ligands demonstrated mechanistically conventional reaction parameters in excellent agreement with Kagan's ML(2) system, the asymmetric induction in the presence of a chiral aminoalcohol was found to vary greatly with loading and %ee of the ligand. Aminothiols remain the ligands of choice for the highly enantioselective formation of allylic alcohols and provide experimentally more predictable reaction variables. However, new, optimized conditions lead to a synthetically useful product %ee using the readily available and scalable aminoalcohol 2a.  相似文献   

12.
《Chirality》2017,29(12):798-810
Enantiomerically pure secondary alcohols are essential compounds in organic synthesis and are used as chiral auxiliaries and synthetic intermediates in the pharmaceutical, agrochemical, and fine chemical industries. One of the attractive and practical approaches to achieving optically pure secondary alcohols is oxidative kinetic resolution of racemic secondary alcohols using chiral Mn(III) salen complexes. In the last decade, several chiral Mn(III) salen complexes have been reported with excellent enantioselectivity and activity in the homogeneous and heterogeneous catalysis of the oxidative kinetic resolution of racemic secondary alcohols. This review article is an overview of the literature on the recent development of chiral Mn(III) salen complexes for oxidative kinetic resolution of racemic secondary alcohols. The catalytic activity of monomeric, dimeric, macrocyclic, polymeric, and silica/resin supported chiral Mn(III) salen complexes is discussed in detail.  相似文献   

13.
D Khare  J Orban 《Nucleic acids research》1992,20(19):5131-5136
The chemical synthesis of backbone deuterium labelled [r(CGCGAAU*U*CGCG)]2 (U* = [5'-2H]U) is described. An efficient purification procedure was developed using a polymeric reverse phase (PRP) HPLC column at 60 degrees C. This procedure provided pure RNA dodecamer in the multi-milligram quantities (39% overall yield) necessary for dynamics studies using solid-state deuterium NMR. The purification method has been effectively applied to other RNA sequences and will assist biophysical studies which require relatively large quantities of RNA oligomers.  相似文献   

14.
Hauck W  Adam P  Bobier C  Landmesser N 《Chirality》2008,20(8):896-899
Armodafinil, the (R)-enantiomer of modafinil, is a medication used to treat the excessive sleepiness associated with narcolepsy, obstructive sleep apnea/hypopnea syndrome, and shift work sleep disorder. We report here the chemical development of armodafinil and the investigations that led to a commercial route to prepare this pure enantiomer. Three synthetic approaches were used to provide the chiral sulfoxide. Resolution via preferential crystallization was used for phase I clinical trials and was subsequently replaced by chiral chromatography, enabling us to pursue a rapid filing and registration of the API. Finally, the commercial route was developed and employed asymmetric oxidation catalyzed by a titanium(IV) isopropoxide and diethyl tartrate system. The advantages of choosing a chromatographic development pathway to expedite registration while concurrently developing an economical chiral synthesis route is discussed in the context of armodafinil development.  相似文献   

15.
A new synthesis of enantiomerically pure 1-amino-1-deoxy-myo-inositol is reported. The route described employs p-benzoquinone, an achiral compound, as the starting material to give conduritol B tetraacetate in three steps. Kinetic resolution of this compound using a palladium catalyst with a chiral ligand allows access to a conduritol B tetraester in high enantiomeric excess. This compound is transformed into tetrabenzyl conduritol B epoxide, which is regioselectively opened with azide to give the key azidocyclitol. Final transformation into (-)-1-amino-1-deoxy-myo-inositol hydrochloride is achieved in four synthetic steps. This sequence allows the synthesis of this compound in high enantiomeric purity in a semi-preparative scale.  相似文献   

16.
An improved strategy for the selective synthesis of 2'-O-methyl and 3'-O-methyl guanosine from 2-aminoadenosine is reported by using the catalyst stannous chloride. The regioselectivity of the 2' and 3'-O-alkylation was achieved by optimizing the addition, timing, and concentration of the catalysts and diazomethane during the methylation reaction. An efficient and selective alkylation at 2'-OH of 2-aminoadenosine was achieved by mixing a stoichiometric amount of stannous chloride at room temperature in DME The reaction mixture was stirred at 50 degrees C for 1 min and immediately followed by addition of diazomethane. The resulting 2'-O-methyl 2-aminoadenosine was treated with the enzyme adenosine deaminase, which resulted in an efficient conversion to the desired 2'-O-methylguanosine (98% yield). The product was isolated by crystallization. In contrast, the methylation at 3'-OH of 2-aminoadenosine was achieved by mixing a stoichiometric amount of stannous chloride in DMF and stirring at 50 degrees C for 15 min, followed by addition of diazomethane. The resulting mixture containing 3'-O-methyl-2-aminoadenosine in 90% yield and 2'-O-methyl-2-aminoadenosine in 10% yield was treated with the enzyme adenosine deaminase, which preferentially deaminated only 3'-O-methyl-2-aminoadenosine, resulting in the production of 3'-O-methylguanosine in 88% yield. Due to the extremely low solubility 3'-O-methylguanosine, the compound precipitated and was isolated by centrifugation. This synthetic route obviates the chromatographic purification. Selective monomethylation is achieved by using the unprotected ribonucleoside. As a result, the method described herein represents a significant improvement over the current synthetic approach by providing superior product yield and economy, a much more facile purification of 2',3'-O-methylated isomers, and eliminating the need for protected ribonucleosides reagents.  相似文献   

17.
Sphingolipid synthesis involves a highly conserved biosynthetic pathway that produces fundamental precursors of complex sphingolipids. The final reaction involves the insertion of a double bond into dihydroceramides to generate the more abundant ceramides, which are converted to sphingomyelins and glucosylceramides/gangliosides by the addition of polar head groups. Although ceramides have long been known to mediate cellular stress responses, the dihydroceramides that are transiently produced during de novo sphingolipid synthesis were deemed inert. Evidence published in the last few years suggests that these dihydroceramides accumulate to a far greater extent in tissues than previously thought. Moreover, they have biological functions that are distinct and non-overlapping with those of the more prevalent ceramides. Roles are being uncovered in autophagy, hypoxia, and cellular proliferation, and the lipids are now implicated in the etiology, treatment, and/or diagnosis of diabetes, cancer, ischemia/reperfusion injury, and neurodegenerative diseases. This minireview summarizes recent findings on this emerging class of bioactive lipids.  相似文献   

18.
Soluble polymer-supported synthetic method provides a highly efficient route for the construction of biologically important 1,5-benzodiazepin-2-ones. A library of N-substituted benzodiazepinones can be readily assembled utilizing S(N)Ar reaction, reduction of nitro group and one-pot cyclization following N-alkylation as the key step in the synthesis. All reactions in the sequence were performed at room temperature to facilitate the generation of libraries in a parallel fashion. The crude products were obtained in 80-95% yield with 60-96% HPLC purity.  相似文献   

19.
A stereoselective synthetic route has been developed for the combinatorial synthesis of a structurally unique class of C-4' side chain modified peptide-linked nucleosides. The synthetic strategy and approach involves initial synthesis of a strategically functionalized amino butenolide template, utilizing L-serine as a chiral starting material. Subsequent transformation of the above lactone to C4' aminoalkyl substituted nucleosides, followed by the peptidic coupling of the C4' side chain amine with various amino acids completed the syntheses of the target peptidyl nucleosides. Employing the above route, and utilizing a combination of easily available nucleobases (4) and amino acids (6) as the two diversity elements, synthesis of a 24-member combinatorial library of the title peptide-linked nucleosides has been accomplished.  相似文献   

20.
N-acylurea, a side product in peptide synthesis from DCC, preserves its chiral integrity although peptides formed simultaneously in the same reaction are racemized to a large extent. This observation is inconsistent with the generally accepted opinion that racemization-prone O-acylisourea is a common intermediate for both peptides and N-acylurea. Chiral purity of N-acylureas and peptides was determined by HPLC using chiral stationary phases. An efficient method of synthesis of chirally pure N-acylureas is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号