首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. K. Pearson  M. S. Fox 《Genetics》1988,118(1):13-19
Previous studies of bacteriophage λ recombination have provided indirect evidence that substantial sequence nonhomologies, such as insertions and deletions, may be included in regions of heteroduplex DNA. However, the direct products of heterology-containing heteroduplex DNA--heterozygous progeny phage--have not been observed. We have constructed a series of small insertion and deletion mutations in the cI gene to examine the possibility that small heterologies might be accommodated in heterozygous progeny phage. Genetic crosses were carried out between λcI(-) Oam29 and λcI(+) Pam80 under replication-restricted conditions. Recombinant O(+)P(+) progeny were selected on mutL hosts and tested for cI heterozygosity. Heterozygous recombinants were readily observed with crosses involving insertions of 4 to 19 base pairs (bp) in the cI gene. Thus, nonhomologies of at least 19 bp can be accommodated in regions of heteroduplex DNA during λ recombination. In contrast, when a cI insertion or deletion mutation of 26 bp was present, few of the selected recombinants were heterozygous for cI. Results using a substitution mutation, involving a 26-bp deletion with a 22-bp insertion, suggest that the low recovery of cI heterozygotes containing heterologies of 26 bp or more is due to a failure to encapsidate DNA containing heterologies of 26 bp or more into viable phage particles.  相似文献   

2.
T Miwa  K Matsubara 《Gene》1982,20(2):267-279
Several species of DNA molecules are packaged into lambda phage heads if they carry the region around the cohesive end site of lambda phage (cos lambda). The minimal functional sequence around cos lambda needed for packaging was examined by cloning in pBR322. The results showed that the minimal region contained 85 bp around cos lambda; 45 bp of the left arm of lambda phage and 40 bp of the right arm. A 75-bp region located to the right of the minimal region seems to enhance packaging. A 223-bp fragment containing these regions can be used as a portable element for plasmid DNA packaging into lambda phage heads. Plasmid ppBest 322, a derivative of pBR322 carrying this portable packager and both amp and tet genes, was constructed. This plasmid is useful for cloning of large DNA fragments.  相似文献   

3.
The assembly of phage phi 29 occurs by a single pathway, and the DNA protein (DNA-gp3) of "packaging intermediates" can be obtained after DNase I interruption of in vitro complementation. A broad spectrum of DNA molecules of variable length was isolated from DNase I-treated proheads. Restriction endonuclease EcoRI digestion and electrophoretic analysis of these DNA molecules suggested that DNA-gp3 packaging was oriented with respect to the physical map and was a complex process. Proteinase K-treated exogenous DNA was not packaged. When exogenous DNA-gp3 was predigested with the restriction endonucleases BstEII. EcoRI, HpaI, and HpaII, the left-end fragments, ranging in size from 8 to 0.9 megadaltons, were selectively and efficiently packaged. During in vivo and in vitro assembly, DNA-gp3 is packaged into proheads, the "core-scaffolding" protein gp7 exits from the particles, and the DNA-filled heads assume the angular morphology of phage phi 29. The packaging of a 4.1-megadalton DNA-gp3 left-end fragment (one third of the genome) resulted in the exit of gp7 and the transition to angularity.  相似文献   

4.
We have examined the effects of placing nonhomologous DNA on the ends of an insertion-type gene targeting vector. The presence of terminal heterologies was found to be compatible with insertion targeting, and the terminal heterologies were efficiently removed. Terminal heterologies reduced the frequency of gene targeting to variable extents. The degree of inhibition of targeting was dependent on the length and the position of the heterology: 2.1kb heterologous sequences were more inhibitory than shorter regions of heterology, and heterology placed on the end of the long (4.8kb) arm of homology was more inhibitory than heterology positioned on the end of the short (0.8kb) arm. When heterology was placed on both arms of the targeting vector the targeting efficiencies were similar to or higher than when heterology was present on the long arm only. These results suggest that terminal sequences are removed simultaneously from both ends of targeting vectors. The removal of terminal sequences probably occurs by exonucleolytic degradation of both strands at each end, and removal of at least one of the strands is intimately coupled with the process of homologous recombination. These findings have implications for the design of gene targeting vectors.  相似文献   

5.
Bacteriophage terminases package DNA through the portal ring of a procapsid during phage maturation. We have probed the mechanism of the phage T4 large terminase subunit gp17 by analyzing linear DNAs that are translocated in vitro. Duplex DNAs of random sequence from 20 to 500 bp were efficiently packaged. Dye and short, single-stranded end extensions were tolerated, whereas 20-base extensions, hairpin ends, 20-bp DNA-RNA hybrid, and 4-kb dsRNA substrates were not packaged. Molecules 60 bp long with 10 mismatched bases were translocated; substrates with 20 mismatched bases, a related D-loop structure, or ones with 20-base single-strand regions were not. A single nick in 100- or 200-bp duplexes, irrespective of location, reduced translocation efficiency, but a singly nicked 500-bp molecule was packaged as effectively as an unnicked control. A fluorescence-correlation-spectroscopy-based assay further showed that a 100-bp nicked substrate did not remain stably bound by the terminase-prohead. Taken together, two unbroken DNA strands seem important for packaging, consistent with a proposed torsional compression translocation mechanism.  相似文献   

6.
The protein products of three adjacent P22 genes, 4, 10 and 26, are required for the stabilization of DNA newly packaged into P22 phage capsids. We have isolated unstable DNA containing capsids from cells infected with mutants defective in these genes. All three classes could be converted into mature phage in vitro, confirming that they represent intermediates in particle maturation. The first of the three proteins to add to the newly filled capsids is gp4, followed by gp10 and gp26. The active form of gp4 sediments at 3 S, while the active forms of both gp10 and gp26 sediment at 5 S. These soluble subunits appear to polymerize onto the newly filled capsids to form the neck of the mature phage, the channel for DNA injection. Since gp4 is the first protein to act after DNA packaging, the unstable DNA containing capsids from 4- -infected cells must represent the direct product of the packaging of DNA into procapsids. The major fraction of these capsids lost activity with a half-life of 1.1 minutes at 23 degrees C, though they were much more stable at 0 degree C. Electron microscopic observations indicated that the loss of activity was due to the DNA exiting from the incomplete capsids. The marginal stability of the condensed DNA molecules within capsids is consistent with models of ATP-driven condensation and spontaneous DNA ejection. The basis of the stability of these highly condensed molecules remains to be determined.  相似文献   

7.
Circular monomeric lambda DNA molecules were used as a substrate for packaging reaction in vitro. For obtaining lambda DNA in circular monomeric form only, Escherichia coli recA plasmid bearing cells were used. This hybrid DNA molecule which we designated phasmid lambda pMYF11, is the pBR322 plasmid in which lambda 47.1 DNA was introduced in vitro. The phasmid can exist in the plasmid form or as a non-defective phage. The efficiency of packaging reaction in vitro proved to be similar for monomeric circular and linear form of phasmid DNA molecules. The cI- variant of the phasmid is not able to exist as a plasmid even in the cells containing homoimmune prophage. Still, cI+ phasmid variants capable of lysogenizing arise with low frequency, as a result of recombination between the resident cI+ prophage and infecting cI- phasmid.  相似文献   

8.
A small RNA (pRNA, 174 nt) is known to be essential for DNA packaging in bacteriophage phi 29. However, in an in vitro DNA packaging system based on hybrid lambda/phi 29 proheads (made up of head proteins from phage lambda and connectors from phage phi 29), the specificity of DNA packaging is lost, and different RNA molecules fulfil the requirements for DNA packaging, albeit with less efficiency than phi 29 pRNA. Competition assays with RNAs from different sources have shown that phi 29 connectors bind preferentially pRNA. An increase in the efficiency of phi 29 DNA packaging into hybrid proheads induced by phi 29 pRNA is observed because, when phi 29 pRNA is incubated with hybrid proheads, phi 29 DNA is packaged more efficiently than other DNAs of similar length. Furthermore, when hybrid proheads carrying phi 29 pRNA are incubated with a mixture of DNAs from different sources, phi 29 DNA is selectively packaged, thus indicating that phi 29 pRNA determines the specificity of DNA packaging.  相似文献   

9.
Terminases of double-stranded DNA bacteriophages are required for packaging and generation of terminii in replicated concatemeric DNA molecules. Genetic evidence suggests that these functions in phage T4 are carried out by the products of genes 16 and 17. We cloned these T4 genes into a heat-inducible cI repressor-lambda PL promoter vector system, and overexpressed them in Escherichia coli. We developed an in-vitro DNA packaging system, which, consistent with the genetic data, shows an absolute requirement for the terminase proteins. The overexpressed terminase proteins gp16 and gp17 appear to form a specific complex and an ATP binding site is present in the gp17 molecule. We purified the terminase proteins either as individual gp16 or gp17 proteins, or as a gp16-gp17 complex. The gp16 function of the terminase complex is dispensable for packaging mature DNA, whereas gp17 is essential for packaging DNA under any condition tested. We constructed a defined in-vitro DNA packaging system with the purified terminase proteins, purified proheads and a DNA-free phage completion gene products extract. All the components of this system can be stored at -90 degrees C without loss of packaging activity. The terminase proteins, therefore, may serve as useful reagents for mechanistic studies on DNA packaging, as well as to develop T4 as a packaging-cloning vector.  相似文献   

10.
Summary P1 transduces bacterial chromosomal markers with widely differing frequencies. We use quantitative Southern hybridisations here to show that, despite this, most markers are packaged at similar levels. Exceptions are a group of markers near 2 min and another at 90 min which seem to be packaged at levels two-to threefold higher. We thus conclude that certain marker frequency variations in transduction can be explained by differences in packaging level, but that most cannot. The limited range in packaging levels suggests that P1 can initiate the packaging of chromosomal DNA from many sites. This idea is supported by our failure to find any chromosomal sequences with homology to the phage pac site and by the occurrence of hybridising bands which seem to suggest sequential packaging from a large number of specific sites. We eliminate the possibility that chromosomal DNA packaging is the result of endonucleolytic cutting by the P1 res enzyme.  相似文献   

11.
T. Langin  V. Haedens    J. L. Rossignol 《Genetics》1988,119(2):337-344
Large heterologies in gene b2 strongly increase the frequencies of reciprocal exchanges on their left border, towards the high conversion end. In a previous study, we observed that heterozygous point mutations located in the high conversion end (region F) stimulate the reciprocal exchanges instigated by the large heterology 138. We have defined some properties of this stimulation. The effect does not depend on the nature of the large heterology used. It is effective only with point mutations located on the left side of the large heterology. It does not depend on the number of heterozygosities accumulated in region F. It is not specific on the location of point mutations in region F: it decreases from region F (left end) to region E (middle part of b2). It is correlated with the mismatch correction efficiencies of the point mutations used. It is not observed in the absence of a large heterology. Point mutation heterozygosities which stimulate reciprocal exchanges also decrease the frequency of HDNA formation in gene b2. We propose a model in which reciprocal exchanges on the one hand and hybrid DNA formation on the other hand correspond to alternative processings of a common recombination intermediate.  相似文献   

12.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

13.
Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasmids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size head, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.  相似文献   

14.
The terminase motors of bacteriophages have been shown to be among the strongest active machines in the biomolecular world, being able to package several tens of kilobase pairs of viral genome into a capsid within minutes. Yet, these motors are hindered at the end of the packaging process by the progressive buildup of a force-resisting packaging associated with already packaged DNA. In this experimental work, we raise the issue of what sets the upper limit on the length of the genome that can be packaged by the terminase motor of phage λ and still yield infectious virions and the conditions under which this can be efficiently performed. Using a packaging strategy developed in our laboratory of building phage λ from scratch, together with plaque assay monitoring, we have been able to show that the terminase motor of phage λ is able to produce infectious particles with up to 110% of the wild-type λ-DNA length. However, the phage production rate, and thus the infectivity, decreased exponentially with increasing DNA length and was a factor of 10(3) lower for the 110% λ-DNA phage. Interestingly, our in vitro strategy was still efficient in fully packaging phages with DNA lengths as high as 114% of the wild-type length, but these viruses were unable to infect bacterial cells efficiently. Further, we demonstrated that the phage production rate is modulated by the presence of multivalent ionic species. The biological consequences of these findings are discussed.  相似文献   

15.
The mechanism of lambda phage-mediated transduction of hybrid colicin E1 DNAs of various lengths was studied, and factors influencing the formation of these transducing particles were investigated. The results were as follows: 1. The presence of a cohesive end site of lambda phage (coslambda) on colicin E1 DNA was essential for packaging of the DNA. 2. Packaging of colicin E1 DNAs, which carry coslambda with molecular sizes corresponding to 68% of that of lambda phage DNA, was observed in the absence of all known recombination functions of E. coli K-12 and of lambda phage. 3. Hybrid colicin E1 DNAs having coslambda with molecular sizes corresponding to 28% of that of lambda phage DNA were packaged within lambda phage particles as trimers; hybrid DNAs with coslambda of 40 and 47% of the length of lambda phage DNA were packaged as dimers; and those with molecular sizes of 68% of that of lambda phage DNA were packaged mostly as monomers. These results demonstrated that two factors are essential for the packaging of DNAs within lambda phage particles; the presence of coslambda on the DNA molecule and an appropriate size of DNA.  相似文献   

16.
Replication and packaging of choleraphage phi 149 DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
R Chowdhury  A Ray  P Ray    J Das 《Journal of virology》1987,61(12):3999-4006
The intercellular replication of the circularly permuted DNA of choleraphage phi 149 involves a concatemeric DNA structure with a size equivalent to six genome lengths. The synthesis of both monomeric and concatemeric DNAs during replication of phi 149 occurred in the cytoplasm. The concatemers served as the substrate for the synthesis of mature phage DNA, which was eventually packaged by a headful mechanism starting from a unique pac site in the concatemeric DNA. Packaging of DNA into phage heads involved binding of concatemeric DNA to the cell membrane. A scheme involving sequential packaging of five headfuls proceeding in the counterclockwise direction from the pac site is proposed. After infection under high-phosphate conditions, the concatemeric DNA intermediates were not formed, although synthesis of monomeric molecules was unaffected.  相似文献   

17.
18.
In complex DNA bacteriophages like lambda, T4, T7, P22, P2, the DNA is packaged into a preformed precursor particle which sometimes has a smaller size and often a shape different from that of the phage head. This packaging mechanism is different from the one suggested for the RNA phages, according to which RNA nucleates the shell formation. The different mechanisms could be understood by comparing the genomes to be packaged: single stranded fII RNA has a very compact structure with high helix content. It might easily form quasispherical structures in solution (as seen in the electron microscope by Thach & Thach (1973)) around which the capsid could assemble. Double stranded phage DNA, on the other hand, is a rigid molecule which occupies a large volume in solution and has to be concentrated 15-fold during packaging into the preformed capsid, and the change in the capsid structure observed hereby might provide the necessary DNA condensation energy.  相似文献   

19.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

20.
We have examined the behavior of a herpes simplex virus strain KOS isolate in which the two inverted repeats flanking the short segment of viral DNA differ in length by approximately 60 base pairs. We find that individual viral DNA molecules exist which contain the two distinguishable repeats, demonstrating that heterology between the repeats is tolerated. However, viruses heterozygous for the two different repeats are unstable, segregating both classes of homozygotes at a high frequency. We propose that this segregation is a consequence of the high-frequency recombination events which also result in genome segment inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号